Electron Microscopic Investigations on the Structure of the Photoreceptor Cells in the Compound Eye of Ascalaphus macaronius(Insecta: Neuroptera). (Preliminary Note)

1975 ◽  
pp. 410-412 ◽  
Author(s):  
Lothar Schneider ◽  
H. Langer
1992 ◽  
Vol 101 (1) ◽  
pp. 247-254 ◽  
Author(s):  
J.L. Hicks ◽  
D.S. Williams

The Drosophila ninaC gene encodes for two head-specific proteins of 132 kDa and 174 kDa. Their predicted amino acid sequences indicate that they may have myosin I and kinase properties. We have: (1) determined the cellular and subcellular distributions of the ninaC proteins in the Drosophila retina by electron microscopic immunocytochemistry with an antibody specific for epitopes shared by both proteins; (2) characterized the ultrastructure of the mutant phenotype. The proteins were detected only in the photoreceptor cells, but were detected in all classes of the compound eye photoreceptors. Within the photoreceptors, they were found in the rhabdomeral microvilli and the cytoplasm adjacent to the rhabdomeres. This distribution coincides with that shown previously for actin filaments. Immunolabelling of tissue from the ninaC P221 mutant, which lacks the 174 kDa protein, and two mutants whose rhabdomeres degenerate, suggests that the 132 kDa protein is present primarily in the cytoplasm adjacent to the rhabdomeres, and that the 174 kDa protein is concentrated in the rhabdomeres. Our ultrastructural analysis showed that the axial cytoskeleton of the rhabdomeral microvilli (which contains filamentous actin) was absent in both the null and P221 mutants. In the photoreceptor cell cytoplasm, the number of multivesicular bodies in the null mutant, but not the P221 mutant, was 3-fold greater in comparison with wild-type.(ABSTRACT TRUNCATED AT 250 WORDS)


Author(s):  
G. Lehmpfuhl

Introduction In electron microscopic investigations of crystalline specimens the direct observation of the electron diffraction pattern gives additional information about the specimen. The quality of this information depends on the quality of the crystals or the crystal area contributing to the diffraction pattern. By selected area diffraction in a conventional electron microscope, specimen areas as small as 1 µ in diameter can be investigated. It is well known that crystal areas of that size which must be thin enough (in the order of 1000 Å) for electron microscopic investigations are normally somewhat distorted by bending, or they are not homogeneous. Furthermore, the crystal surface is not well defined over such a large area. These are facts which cause reduction of information in the diffraction pattern. The intensity of a diffraction spot, for example, depends on the crystal thickness. If the thickness is not uniform over the investigated area, one observes an averaged intensity, so that the intensity distribution in the diffraction pattern cannot be used for an analysis unless additional information is available.


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


Author(s):  
Matti Järvilehto ◽  
Riitta Harjula

The photoreceptor cells in the compound eyes of higher diptera are clustered in groups (ommatidia) of eight receptor cells. The cells from six adjacent ommatidia are organized into optical units, neuro-ommatia sharing the same visual field. In those ommatidia the optical axes of the photopigment containing structures (rhabdomeres) are parallel. The rhabdomeres of the photoreceptor cells are separated from each other by an interstitial i.e innerommatidial space (IOS). In the photoreceptor cell body, besides of the normal cell organelles, a cellular matrix is a structurally apparent component. Similar kind of reticular formation is also found in the IOS containing some unidentified filamentary substance, of which composition and functional significance for optical properties of vision is the aim of this report.The prefixed (2% PA + 0.2% GA in 0.1-n phosphate buffer, pH 7.4, for 1h), frozen section blocks of the compound eye of the blowfly (Calliphora erythrocephala) were prepared by immuno-cryo-techniques. The ultrathin cryosections were incubated with antibodies of monoclonal α-tubulin and polyclonal smooth muscle actin. Control labelings of excess of antigen, non-immune serum and non-present antibody were perforated.


1977 ◽  
Vol 55 (20) ◽  
pp. 2565-2573 ◽  
Author(s):  
Robert D. Slocum ◽  
Gary L. Floyd

The nature of the association between the basidiomycetous mycobiont and the blue-green phycobiont in two species of the tropical basidiolichen Dictyonema was investigated using Nomarski light optics and scanning and transmission electron microscopy. Although members of this family may exhibit either a homoiomerous or heteromerous type of thallus organization, the fungus–alga relationship at the cellular level is remarkably consistent. Scytonema filaments are intimately associated with appressorial hyphae of the mycobiont and with extensive intracellular hyphae, which appear to be unrelated to the basidiomycetous fungal symbiont. This is the first report of a lichen displaying an apparent dual fungal symbiosis with the algal host. Association with the intracellular fungus produces no discernible damage to the phycobiont and apparently does not interfere with the symbiosis involving the basidiomycetous fungus.


1984 ◽  
Vol 23 (6) ◽  
pp. 482-485
Author(s):  
T. I. Fil' ◽  
Yu. I. Khimchenko ◽  
O. A. Katsyuk ◽  
A. K. Dudchenko

Sign in / Sign up

Export Citation Format

Share Document