Convergent Beam Electron Diffraction

Author(s):  
G. Lehmpfuhl

Introduction In electron microscopic investigations of crystalline specimens the direct observation of the electron diffraction pattern gives additional information about the specimen. The quality of this information depends on the quality of the crystals or the crystal area contributing to the diffraction pattern. By selected area diffraction in a conventional electron microscope, specimen areas as small as 1 µ in diameter can be investigated. It is well known that crystal areas of that size which must be thin enough (in the order of 1000 Å) for electron microscopic investigations are normally somewhat distorted by bending, or they are not homogeneous. Furthermore, the crystal surface is not well defined over such a large area. These are facts which cause reduction of information in the diffraction pattern. The intensity of a diffraction spot, for example, depends on the crystal thickness. If the thickness is not uniform over the investigated area, one observes an averaged intensity, so that the intensity distribution in the diffraction pattern cannot be used for an analysis unless additional information is available.

Author(s):  
T.W. Jeng ◽  
W. Chiu

Crotoxin complex is a neurotoxin isolated from the venom of the South America rattlesnake, Crotalus durrissus terrificus. It consists of two dissimilar subunits, one very acidic and the other very basic. Both acidic and basic subunits are required to show its neurotoxicity. The toxin attacks novally on both the pre-synaptic and the post-synaptic sites of the neuro-muscular junction.This protein has been crystallized in thin platelet forms suitable for electron crystallographic studies and an electron diffraction pattern of a glucose embedded crotoxin complex crystal has been recorded to an atomic resolution. The space group of this thin crystal was determined to be P4222 by a combination of electron microscopic techniques. In each unit cell, there are 8 crotoxin complex molecules arranged in a 4 layer configuration along the c axis. Different crystals have been found to have different thicknesses. We have been able to determine whether the diffraction data is obtained from a crystal with a half or a full unit cell by calculating the crystallographic reliability factors from the digitized electron diffraction pattern and by measuring optical density of a low magnification image recorded immediately after each electron diffractign pattern.


Author(s):  
Rasmus R. Schröder ◽  
Christoph Burmester

Diffraction patterns of 3D protein crystals embedded in vitrious ice are critical to record. Inelastically scattered electrons almost completely superimpose the diffraction pattern of crystals if the thickness of the crystal is higher than the mean free path of electrons in the specimen. Figure 1 shows such an example of an unfiltered electron diffraction pattern from a frozen hydrated 3D catalase crystal. However, for thin 2D crystals electron diffraction has been the state of the art method to determine the Fourier amplitudes for reconstructions to atomic level, and in one case the possibility of obtaining Fourier phases from diffraction patterns has been studied. One of the main problems could be the background in the diffraction pattern due to inelastic scattering and the recording characteristics for electrons of conventional negative material.It was pointed out before, that the use of an energy filtered TEM (EFTEM) and of the Image Plate as a large area electron detector gives considerable improvement for detection of diffraction patterns.


2001 ◽  
Vol 7 (S2) ◽  
pp. 764-765
Author(s):  
J. A. Eades

Introduction. Electron diffraction is sometimes considered to be a “difficult subject”. It is certainly one that can not be covered in the space available here. Rather this tutorial will present a few specific aspects of the topic. The topics have been chosen in the hope that they will provide illumination that spreads more widely than just onto the material presented. Several books treat electron diffraction with more generality.Kikuchi lines Kikuchi lines are of great use in orienting a sample. Unfortunately, in modern microscopes, Kikuchi lines are not seen in selected-area diffraction (SAD). This is because immersion lenses send parallel electrons, from different parts of the sample (like the Kikuchi lines from a flat specimen), to different places in the diffraction pattern. Thus Kikuchi lines are blurred and generally not useful whenever, as in SAD patterns, a large area of the sample contributes to the diffraction pattern.


Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.


Author(s):  
P. Ling ◽  
R. Gronsky ◽  
J. Washburn

The defect microstructures of Si arising from ion implantation and subsequent regrowth for a (111) substrate have been found to be dominated by microtwins. Figure 1(a) is a typical diffraction pattern of annealed ion-implanted (111) Si showing two groups of extra diffraction spots; one at positions (m, n integers), the other at adjacent positions between <000> and <220>. The object of the present paper is to show that these extra reflections are a direct consequence of the microtwins in the material.


Author(s):  
Douglas L. Dorset ◽  
Anthony J. Hancock

Lipids containing long polymethylene chains were among the first compounds subjected to electron diffraction structure analysis. It was only recently realized, however, that various distortions of thin lipid microcrystal plates, e.g. bends, polar group and methyl end plane disorders, etc. (1-3), restrict coherent scattering to the methylene subcell alone, particularly if undistorted molecular layers have well-defined end planes. Thus, ab initio crystal structure determination on a given single uncharacterized natural lipid using electron diffraction data can only hope to identify the subcell packing and the chain axis orientation with respect to the crystal surface. In lipids based on glycerol, for example, conformations of long chains and polar groups about the C-C bonds of this moiety still would remain unknown.One possible means of surmounting this difficulty is to investigate structural analogs of the material of interest in conjunction with the natural compound itself. Suitable analogs to the glycerol lipids are compounds based on the three configurational isomers of cyclopentane-1,2,3-triol shown in Fig. 1, in which three rotameric forms of the natural glycerol derivatives are fixed by the ring structure (4-7).


Author(s):  
J. S. Lally ◽  
R. J. Lee

In the 50 year period since the discovery of electron diffraction from crystals there has been much theoretical effort devoted to the calculation of diffracted intensities as a function of crystal thickness, orientation, and structure. However, in many applications of electron diffraction what is required is a simple identification of an unknown structure when some of the shape and orientation parameters required for intensity calculations are not known. In these circumstances an automated method is needed to solve diffraction patterns obtained near crystal zone axis directions that includes the effects of systematic absences of reflections due to lattice symmetry effects and additional reflections due to double diffraction processes.Two programs have been developed to enable relatively inexperienced microscopists to identify unknown crystals from diffraction patterns. Before indexing any given electron diffraction pattern, a set of possible crystal structures must be selected for comparison against the unknown.


Author(s):  
G. G. Hembree ◽  
M. A. Otooni ◽  
J. M. Cowley

The formation of oxide structures on single crystal films of metals has been investigated using the REMEDIE system (for Reflection Electron Microscopy and Electron Diffraction at Intermediate Energies) (1). Using this instrument scanning images can be obtained with a 5 to 15keV incident electron beam by collecting either secondary or diffracted electrons from the crystal surface (2). It is particularly suited to studies of the present sort where the surface reactions are strongly related to surface morphology and crystal defects and the growth of reaction products is inhomogeneous and not adequately described in terms of a single parameter. Observation of the samples has also been made by reflection electron diffraction, reflection electron microscopy and replication techniques in a JEM-100B electron microscope.A thin single crystal film of copper, epitaxially grown on NaCl of (100) orientation, was repositioned on a large copper single crystal of (111) orientation.


Author(s):  
Dr. G. Kaemof

A mixture of polycarbonate (PC) and styrene-acrylonitrile-copolymer (SAN) represents a very good example for the efficiency of electron microscopic investigations concerning the determination of optimum production procedures for high grade product properties.The following parameters have been varied:components of charge (PC : SAN 50 : 50, 60 : 40, 70 : 30), kind of compounding machine (single screw extruder, twin screw extruder, discontinuous kneader), mass-temperature (lowest and highest possible temperature).The transmission electron microscopic investigations (TEM) were carried out on ultra thin sections, the PC-phase of which was selectively etched by triethylamine.The phase transition (matrix to disperse phase) does not occur - as might be expected - at a PC to SAN ratio of 50 : 50, but at a ratio of 65 : 35. Our results show that the matrix is preferably formed by the components with the lower melting viscosity (in this special case SAN), even at concentrations of less than 50 %.


Author(s):  
C. B. Carter ◽  
J. Rose ◽  
D. G. Ast

The hot-pressing technique which has been successfully used to manufacture twist boundaries in silicon has now been used to form tilt boundaries in this material. In the present study, weak-beam imaging, lattice-fringe imaging and electron diffraction techniques have been combined to identify different features of the interface structure. The weak-beam technique gives an overall picture of the geometry of the boundary and in particular allows steps in the plane of the boundary which are normal to the dislocation lines to be identified. It also allows pockets of amorphous SiO2 remaining in the interface to be recognized. The lattice-fringe imaging technique allows the boundary plane parallel to the dislocation to be identified. Finally the electron diffraction technique allows the periodic structure of the boundary to be evaluated over a large area - this is particularly valuable when the dislocations are closely spaced - and can also provide information on the structural width of the interface.


Sign in / Sign up

Export Citation Format

Share Document