Vacuum Ultraviolet and Extreme Ultraviolet Generation with Excimer Lasers

Author(s):  
C. K. Rhodes
1991 ◽  
Vol 236 ◽  
Author(s):  
Peter R. Herman ◽  
Boyi Chen ◽  
David J. Moore ◽  
Mark Canaga-Retnam

AbstractExcimer lasers sources of 193nm and 157 nm wavelength were used to obtain new photoablation etching rates for several materials of interest to the microelectronics industry. The harder 157nm radiation provided lower ablation rates and smaller threshold fluences for Polyimide and Polymethyl Methacrylate (PMMA) than with 193nm. For normally robust materials like quartz and Teflon (PTFE), the 157nm laser produced clean and smooth ablation sites with low threshold fluences of 620mJ/cm2 and 68mJ/cm2, respectively, features impossible to obtain with conventional excimer lasers at longer wavelengths. The data should help define new micromachining applications of these two materials for the electronic, optical or medical industry. Results are also reported for GaAs and InP based materials which are found to undergo moderate etch rates of 30-80nm/pulse at fluences of ∼3J/cm2, but suffer thermal damage and material segregation due to surface melting.


2019 ◽  
Vol 12 (3) ◽  
pp. 3847-3853
Author(s):  
Hsiao-Chi Lu ◽  
Jen-Iu Lo ◽  
Yu-Chain Peng ◽  
Sheng-Lung Chou ◽  
Bing-Ming Cheng ◽  
...  

2020 ◽  
Vol 22 (46) ◽  
pp. 26982-26986
Author(s):  
Hsiao-Chi Lu ◽  
Jen-Iu Lo ◽  
Yu-Chain Peng ◽  
Bing-Ming Cheng

Upon excitation with vacuum-ultraviolet (VUV) and extreme-ultraviolet (EUV) radiation, diamond with nitrogen vacancies (DNV) emits strong photoluminescence (PL) in the wavelength region of 550–800 nm.


1990 ◽  
Vol 61 (2) ◽  
pp. 728-731 ◽  
Author(s):  
Kou Kurosawa ◽  
Wataru Sasaki ◽  
Masahiro Okuda ◽  
Yasuo Takigawa ◽  
Kunio Yoshida ◽  
...  

1972 ◽  
Vol 14 ◽  
pp. 531-531
Author(s):  
G. Mehlman-Balloffet ◽  
J. M. Esteva

AbstractAbsorption spectra of light elements were observed in the vacuum ultraviolet with an original technique described in an earlier paper (Mehlman-Balloffet and Esteva, 1969). The method utilizes a two-vacuum spark mounting: one of the sparks is emitting the continuous background, the other one generates the absorbing plasma. Several light element have been successsively introduced in the spark anode. For all of them new autoionizing levels have been observed in Rydberg series of resonances exhibiting the asymmetric ‘Beutler-Fano’ profile.In the beryllium and magnesium spectra three new series corresponding to two-electron excitation process have been identified while for boron, carbon, nitrogen, aluminium and silicon the resonances observed correspond to single subshell electron excitation such as: 2s22p2P0 → 2s2p(3P0)np2De for the case of boron.All these series lie in the photoionization continuum of the absorbing atomic species and usually between the first and second ionization limit. This means that they were observed with a normal incidence grating spectrograph in the spectral range 500–1500 Å. In the extreme ultraviolet some other transitions involving inner-shell electron excitation were observed. In the beryllium spectra a series lying between 100 and 110 Å was identified while, the magnesium spectra exhibited only isolated resonances in the 220-265 Å range together with an inner-shell 2p electron photoioniation continuum.A complete description of experimental results with numerical data is being submitted for publication (Esteva and Mehlman-Balloffet, 1972).


Sign in / Sign up

Export Citation Format

Share Document