Further Developments on the Solution of the Transient Scalar Wave Equation

Author(s):  
W. J. Mansur ◽  
C. A. Brebbia
2010 ◽  
Vol 181 (11) ◽  
pp. 1850-1858 ◽  
Author(s):  
Xiaofan Li ◽  
Tong Zhu ◽  
Meigen Zhang ◽  
Guihua Long

2009 ◽  
Vol 24 (16) ◽  
pp. 1277-1287 ◽  
Author(s):  
B. RAYCHAUDHURI ◽  
F. RAHAMAN ◽  
M. KALAM ◽  
A. GHOSH

Motion of massive and massless test particle in equilibrium and nonequilibrium case is discussed in a dyadosphere geometry through Hamilton–Jacobi method. Scalar wave equation for massless particle is analyzed to show the absence of superradiance in the case of dyadosphere geometry.


1983 ◽  
pp. 640-655 ◽  
Author(s):  
Allan W. Snyder ◽  
John D. Love

Geophysics ◽  
2012 ◽  
Vol 77 (6) ◽  
pp. T201-T210 ◽  
Author(s):  
Jing-Bo Chen

Forward modeling is an important foundation of full-waveform inversion. The rotated optimal nine-point scheme is an efficient algorithm for frequency-domain 2D scalar wave equation simulation, but this scheme fails when directional sampling intervals are different. To overcome the restriction on directional sampling intervals of the rotated optimal nine-point scheme, I introduce a new finite-difference algorithm. Based on an average-derivative technique, this new algorithm uses a nine-point operator to approximate spatial derivatives and mass acceleration term. The coefficients can be determined by minimizing phase-velocity dispersion errors. The resulting nine-point optimal scheme applies to equal and unequal directional sampling intervals, and can be regarded a generalization of the rotated optimal nine-point scheme. Compared to the classical five-point scheme, the number of grid points per smallest wavelength is reduced from 13 to less than four by this new nine-point optimal scheme for equal and unequal directional sampling intervals. Three numerical examples are presented to demonstrate the theoretical analysis. The average-derivative algorithm is also extended to a 2D viscous scalar wave equation and a 3D scalar wave equation.


Sign in / Sign up

Export Citation Format

Share Document