1/2 Subharmonic Resonance and Chaotic Motions in a Model of Elastic Cable

Author(s):  
F. Benedettini ◽  
G. Rega
2021 ◽  
Vol 33 (4) ◽  
pp. 044101
Author(s):  
Donghun Park ◽  
Jaeyoung Park ◽  
Minwoo Kim ◽  
Jiseop Lim ◽  
Seungtae Kim ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 869
Author(s):  
Rongrong Peng ◽  
Xingzhong Zhang ◽  
Peiming Shi

Based on the analysis of the influence of roll vibration on the elastoplastic deformation state of a workpiece in a rolling process, a dynamic rolling force model with the hysteresis effect is established. Taking the rolling parameters of a 1780 mm hot rolling mill as an example, we analyzed the hysteresis between the dynamic rolling force and the roll vibration displacement by varying the rolling speed, roll radius, entry thickness, front tension, back tension, and strip width. Under the effect of the dynamic rolling force and considering the nonlinear effect between the backup and work rolls as well as the structural constraints on the rolling mill, a hysteretic nonlinear vertical vibration model of a four-high hot rolling mill was established. The amplitude-frequency equations corresponding to 1/2 subharmonic resonance and 1:1 internal resonance of the rolling mill rolls were obtained using a multi-scale approximation method. The amplitude-frequency characteristics of the rolling mill vibration system with different parameters were studied through a numerical simulation. The parametric stiffness and nonlinear stiffness corresponding to the dynamic rolling force were found to have a significant influence on the amplitude of the subharmonic resonance system, the bending degree of the vibration curve, and the size of the resonance region. Moreover, with the change in the parametric stiffness, the internal resonance exhibited an evident jump phenomenon. Finally, the chaotic characteristics of the rolling mill vibration system were studied, and the dynamic behavior of the vibration system was analyzed and verified using a bifurcation diagram, maximum Lyapunov exponent, phase trajectory, and Poincare section. Our research provides a theoretical reference for eliminating and suppressing the chatter in rolling mills subjected to an elastoplastic hysteresis deformation.


2009 ◽  
Vol 30 (7) ◽  
pp. 811-820 ◽  
Author(s):  
Fang-qi Chen ◽  
Liang-qiang Zhou ◽  
Xia Wang ◽  
Yu-shu Chen

Author(s):  
Ge Kai ◽  
Wei Zhang

In this paper, we establish a dynamic model of the hyper-chaotic finance system which is composed of four sub-blocks: production, money, stock and labor force. We use four first-order differential equations to describe the time variations of four state variables which are the interest rate, the investment demand, the price exponent and the average profit margin. The hyper-chaotic finance system has simplified the system of four dimensional autonomous differential equations. According to four dimensional differential equations, numerical simulations are carried out to find the nonlinear dynamics characteristic of the system. From numerical simulation, we obtain the three dimensional phase portraits that show the nonlinear response of the hyper-chaotic finance system. From the results of numerical simulation, it is found that there exist periodic motions and chaotic motions under specific conditions. In addition, it is observed that the parameter of the saving has significant influence on the nonlinear dynamical behavior of the four dimensional autonomous hyper-chaotic system.


Sign in / Sign up

Export Citation Format

Share Document