On the Derivation of Propagator and Bound State Equations and S-Matrix Elements for Composite States

Author(s):  
H. J. Munczek ◽  
D. W. McKay
1974 ◽  
Vol 29 (6) ◽  
pp. 859-866 ◽  
Author(s):  
A. Grauel

Introducing correlated continuum wave functions for the two- and re-particle-continuum a microscopic theory of nuclear reactions based on a method of Fano is developed. The S-matrix-elements are given by the matrix-elements between correlated continuum wave functions and bound state wave functions. The antisymmetrization of the continuum wave functions with more than one particle in the continuum is included. The theory can be straightforwardly applied on the n-nucleon-emission process following photo- and particle excitations.


1964 ◽  
Vol 19 (7-8) ◽  
pp. 828-834
Author(s):  
G. Heber ◽  
H. J. Kaiser

The vacuum expectation value of the S-matrix is represented, following HORI, as a functional integral and separated according to Svac=exp( — i W) ∫ D φ exp( —i ∫ dx Lw). Now, the functional integral involves only the part Lw of the Lagrangian without derivatives and can be easily calculated in lattice space. We propose a graphical scheme which formalizes the action of the operator W = f dx dy δ (x—y) (δ/δ(y))⬜x(δ/δ(x)) . The scheme is worked out in some detail for the calculation of the two-point-function of neutral BOSE fields with the self-interaction λ φM for even M. A method is proposed which under certain convergence assumptions should yield in a finite number of steps the lowest mass eigenvalues and the related matrix elements. The method exhibits characteristic differences between renormalizable and nonrenormalizable theories.


2000 ◽  
Vol 15 (10) ◽  
pp. 1497-1519
Author(s):  
ANGUS F. NICHOLSON ◽  
DALLAS C. KENNEDY

A perturbative SU (2)L× U (1)Y electroweak theory containing W, Z, photon, ghost, lepton and quark fields, but no Higgs or other fields, gives masses to W, Z and the nonneutrino fermions by means of an unconventional choice for the unperturbed Lagrangian and a novel method of renormalization. The renormalization extends to all orders. The masses emerge on renormalization to one loop. To one loop the neutrinos are massless, the A↔Z transition drops out of the theory, the d quark is unstable and S matrix elements are independent of the gauge parameter ξ.


1996 ◽  
Vol 11 (14) ◽  
pp. 2419-2544 ◽  
Author(s):  
HERBERT WEIGEL

The description of baryons as soliton solutions of effective meson theories for three-flavor (up, down and strange) degrees of freedom is reviewed and the phenomenological implications are illuminated. In the collective approach the soliton configuration is equipped with baryon quantum numbers by canonical quantization of the coordinates describing the flavor orientation. The baryon spectrum resulting from exact diagonalization of the collective Hamiltonian is discussed. The prediction of static properties, such as the baryon magnetic moments and the Cabibbo matrix elements for semileptonic hyperon decays, are explored with regard to the influence of flavor symmetry breaking. In particular, the role of strange degrees of freedom in the nucleon is investigated for both the vector and axial vector current matrix elements. The latter are discussed extensively within the context of the proton spin puzzle. The influence of flavor symmetry breaking on the shape of the soliton is examined, and observed to cause significant deviations from flavor-covariant predictions on the baryon magnetic moments. Short range effects are incorporated by a chirally invariant inclusion of vector meson fields. These extensions are necessary for properly describing the singlet axial vector current and the neutron–proton mass difference. The effects of the vector meson excitations on baryon properties are also considered. The bound state description of hyperons and its generalization to baryons containing a heavy quark are illustrated. In the case of the Skyrme model a comparison is made between the collective quantization scheme and the bound state approach. Finally, the Nambu–Jona-Lasinio model is employed to demonstrate that hyperons can be described as solitons in a microscopic theory of the quark flavor dynamics. This is explained for both the collective and the bound state approaches to strangeness.


1955 ◽  
Vol 51 (4) ◽  
pp. 762-765
Author(s):  
J. C. Polkinghorne

ABSTRACTOrdered graphs are used to obtain the kernels of the single-time, three dimensional, equations for bound states given by Lévy and Klein, and by Tamm and Dancoff.


1982 ◽  
Vol 60 (10) ◽  
pp. 1429-1430
Author(s):  
Gerry McKeon

It is pointed out that if one uses dimensional reduction to regularize integrals that arise when one evaluates S-matrix elements defined by background field quantization, a considerable simplification occurs.


2016 ◽  
Vol 31 (28n29) ◽  
pp. 1645014
Author(s):  
Alan R. White

Reggeon unitarity and non-Abelian gauge field copies are focused on as two Gribov discoveries that, it is suggested, may ultimately be seen as the most significant and that could, in the far distant future, form the cornerstones of his legacy. The crucial role played by the Gribov ambiguity in the construction of gauge theory bound-state amplitudes via reggeon unitarity is described. It is suggested that the existence of a physical, unitary, S-Matrix in a gauge theory is a major requirement that could even determine the theory.


Sign in / Sign up

Export Citation Format

Share Document