Biochemical Characterization, Structure and Transport of Lysosomal Integral Membrane Proteins

Endocytosis ◽  
1992 ◽  
pp. 213-220
Author(s):  
B. Seguí-Real ◽  
M. A. Vega ◽  
J. G. Barriocanal ◽  
L. Yuan ◽  
J. Alcalde ◽  
...  
Author(s):  
D.J. Benefiel ◽  
R.S. Weinstein

Intramembrane particles (IMP or MAP) are components of most biomembranes. They are visualized by freeze-fracture electron microscopy, and they probably represent replicas of integral membrane proteins. The presence of MAP in biomembranes has been extensively investigated but their detailed ultrastructure has been largely ignored. In this study, we have attempted to lay groundwork for a systematic evaluation of MAP ultrastructure. Using mathematical modeling methods, we have simulated the electron optical appearances of idealized globular proteins as they might be expected to appear in replicas under defined conditions. By comparing these images with the apearances of MAPs in replicas, we have attempted to evaluate dimensional and shape distortions that may be introduced by the freeze-fracture technique and further to deduce the actual shapes of integral membrane proteins from their freezefracture images.


2012 ◽  
Vol 28 (11) ◽  
pp. 866
Author(s):  
Jie HENG ◽  
Yan WU ◽  
Xianping WANG ◽  
Kai ZHANG

2000 ◽  
Vol 56 (s1) ◽  
pp. s83-s83
Author(s):  
P. Nollert ◽  
M. L. Chiu ◽  
M. C. Loewen ◽  
A. Royant ◽  
H. Behrhali ◽  
...  

Membranes ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 562
Author(s):  
Miliça Ristovski ◽  
Danny Farhat ◽  
Shelly Ellaine M. Bancud ◽  
Jyh-Yeuan Lee

Lipid composition in cellular membranes plays an important role in maintaining the structural integrity of cells and in regulating cellular signaling that controls functions of both membrane-anchored and cytoplasmic proteins. ATP-dependent ABC and P4-ATPase lipid transporters, two integral membrane proteins, are known to contribute to lipid translocation across the lipid bilayers on the cellular membranes. In this review, we will highlight current knowledge about the role of cholesterol and phospholipids of cellular membranes in regulating cell signaling and how lipid transporters participate this process.


1994 ◽  
Vol 27 (2) ◽  
pp. 157-218 ◽  
Author(s):  
Mark A. Lemmon ◽  
Donald M. Engelman

The membrane-spanning portions of many integral membrane proteins consist of one or a number of transmembrane α-helices, which are expected to be independently stable on thermodynamic grounds. Side-by-side interactions between these transmembrane α-helices are important in the folding and assembly of such integral membrane proteins and their complexes. In considering the contribution of these helix–helix interactions to membrane protein folding and oligomerization, a distinction between the energetics and specificity should be recognized. A number of contributions to the energetics of transmembrane helix association within the lipid bilayer will be relatively non-specific, including those resulting from charge–charge interactions and lipid–packing effects. Specificity (and part of the energy) in transmembrane α-helix association, however, appears to rely mainly upon a detailed stereochemical fit between sets of dynamically accessible states of particular helices. In some cases, these interactions are mediated in part by prosthetic groups.


Sign in / Sign up

Export Citation Format

Share Document