Interference of a Staphylococcus Aureus Bacteriolytic Enzyme with Polymorphonuclear Leucocyte Functions

Author(s):  
S. Valisena ◽  
C. Pruzzo ◽  
P. E. Varaldo ◽  
G. Satta
1970 ◽  
Vol 120 (4) ◽  
pp. 735-744 ◽  
Author(s):  
T. Wadström ◽  
K. Hisatsune

The bacteriolytic enzyme with an isoelectric point of 9.5 that is produced by all strains of Staphylococcus aureus investigated was purified from strain M18 (Wadström & Hisatsune, 1970). This enzyme released reducing groups from cell walls of Micrococcus lysodeikticus and was thus shown to be a bacteriolytic hexosaminidase. Although dinitrophenylation and acid hydrolysis of cell walls hydrolysed by a partially purified enzyme gave DNP-alanine and DNP-glycine from staphylococcal peptidoglycan, which indicated the presence of a peptidase and probably also an N-acetylmuramyl-l-alanine amidase, hydrolysis of cell walls by the extensively purified enzyme did not give any DNP-amino acids. The enzyme digest was purified by Amberlite CG-120 and Sephadex G-10 chromatography. Reduction by sodium borohydride of the disaccharide obtained was followed by acid hydrolysis and paper chromatography. Glucosamine completely disappeared after this treatment and a new spot identical with glucosaminitol appeared. The muramic acid spot remained unchanged. The purified enzyme was found to be devoid of exo-β-N-acetylglucosaminidase activity. These results are compatible with the action of a bacteriolytic endo-β-N-acetylglucosaminidase. It is also proposed that this enzyme is probably identical with the staphylococcal lysozyme. The mode of action of this has not previously been investigated.


2006 ◽  
Vol 188 (17) ◽  
pp. 6286-6297 ◽  
Author(s):  
Angelika Gründling ◽  
Dominique M. Missiakas ◽  
Olaf Schneewind

ABSTRACT Staphylococcus simulans secretes lysostaphin, a bacteriolytic enzyme that specifically binds to the cell wall envelope of Staphylococcus aureus and cleaves the pentaglycine cross bridges of peptidoglycan, thereby killing staphylococci. The study of S. aureus mutants with resistance to lysostaphin-mediated killing has revealed biosynthetic pathways for cell wall assembly. To identify additional genes involved in cell wall envelope biosynthesis, we have screened a collection of S. aureus strain Newman transposon mutants for lysostaphin resistance. Bursa aurealis insertion in SAV2335, encoding a polytopic membrane protein with predicted protease domain, caused a high degree of lysostaphin resistance, similar to the case for a previously described femAB promoter mutant. In contrast to the case for this femAB mutant, transposon insertion in SAV2335, herein named lyrA (lysostaphin resistance A), did not cause gross alterations of cell wall cross bridges such as truncations of pentaglycine to tri- or monoglycine. Also, inactivation of LyrA in a methicillin-resistant S. aureus strain did not precipitate a decrease in β-lactam resistance as observed for fem (factor essential for methicillin resistance) mutants. Lysostaphin bound to the cell wall envelopes of lyrA mutants in a manner similar to that for wild-type staphylococci. Lysostaphin resistance of lyrA mutants is attributable to altered cell wall envelope properties and may in part be due to increased abundance of altered cross bridges. Other lyr mutants with intermediate lysostaphin resistance carried bursa aurealis insertions in genes specifying GTP pyrophosphokinase or enzymes of the purine biosynthetic pathway.


Author(s):  
Masaatsu Koike ◽  
Koichi Nakashima ◽  
Kyoko Iida

Penicillin exerts the activity to inhibit the peptide cross linkage between each polysaccharide backbone at the final stage of wall-peptidoglycan biosynthesis of bacteria. Morphologically, alterations of the septal wall and mesosome in gram-positive bacteria, which were occurred in early time after treatment with penicillin, have been observed. In this experiment, these alterations were cytochemically investigated by means of silver-methenamine staining after periodate oxidation, which is applied for detection of localization of wall mucopolysaccharide.Staphylococcus aureus strain 209P treated with 100 u/ml of penicillin G was divided into two aliquotes. One was fixed by Kellenberger-Ryter's OSO4 fixative at 30, 60 and 120 min after addition of the antibiotic, dehydrated through alcohol series, and embedded in Epon 812 (Specimen A). The other was fixed by 21 glutaraldehyde, dehydrated through glycolmethacrylate series and embedded in glycolmethacrylate mixture, according to Bernhard's method (Specimen B).


Author(s):  
Margaret Hukee

Gold labeling of two antigens (double labeling) is often done on two section surfaces separated by section thickness. Whether labeling is done on both sides of the same section or on two parallel surfaces separated by section thickness (PSSST), comparable results are dependent on an equal number of epitopes being exposed at each surface. We propose a method to study protein labeling within the same field of proteins, by examining two directly adjacent surfaces that were split during sectioning. The number of labeling sites on adjacent surfaces (AS) were compared to sites on PSSST surfaces in individual bacteria.Since each bacteria needed to be recognizable in all three section surfaces, one-hole grids were used for labeling. One-hole grids require a supporting membrane and excessive handling during labeling often ruptures the membrane. To minimize handling, a labeling chamber was designed that is inexpensive, disposable, minimizes contamination, and uses a minimal amount of solution.


1960 ◽  
Vol 38 (3) ◽  
pp. 441-451 ◽  
Author(s):  
William H. Dearing ◽  
Archie H. Baggenstoss ◽  
Lyle A. Weed

VASA ◽  
2013 ◽  
Vol 42 (5) ◽  
pp. 382-386
Author(s):  
Karim Gariani ◽  
Marc Righini ◽  
Marco Roffi ◽  
Gino Gemayel ◽  
Damiano Mugnai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document