The Analysis of Organic Matter in Ore Deposits

1993 ◽  
pp. 28-52 ◽  
Author(s):  
A. P. Gize
Keyword(s):  
1989 ◽  
Vol 31 (4) ◽  
pp. 417-423
Author(s):  
Yu. F. Pogrebnyak ◽  
T. G. Laperdina ◽  
O. B. Askarova ◽  
S. V. Skulov

1996 ◽  
Vol 33 (10) ◽  
pp. 1363-1374 ◽  
Author(s):  
M. Bouadellah ◽  
A. C. Brown ◽  
Y. Héroux

Reflectance measurements and organic petrography were used to study altered organic matter in the dolomitic Middle Jurassic Beddiane sequence hosting the Beddiane lead–zinc deposit. Organic matter occurs in the lower dolostone units of the formation where zinc sulfide mineralization prevails. The upper units, where lead sulfide mineralization is dominant, contain lesser amounts of organic matter. The organic matter in the Beddiane sequence consists of macerals, amorphous kerogen, and solid bitumen, inertinite and vitrinite are ubiquitous. The amount of exinite increases toward mineralized areas but the ratio exinite/kerogen remains constant. Two types of vitrinite are considered on the basis of their reflectance: Vt1 with low reflectance values (0.3–0.5%) and Vt2 with higher values (0.7–1.25%). The ratio Vt1/Vt2 increases and the reflectance values for Vt1 decrease toward the zinc-prevailing units, Organic matter associated with the mineralization exhibits features such as oxidation halos and desiccation cracks, together with a low-fluorescent exinite. The association of the kerogen content, the trend in reflectance values, and the alteration features of the Mississippi Valley-type Beddiane deposit support the hypothesis that the regional flow of hot brines associated with the mineralization process was the cause of anomalous heating, that the occurrence of exinite maceral and its associated gas played a role in the ore deposition, and that the new chemical equilibrium reached by the zinc-dominant host rock after ore deposition is responsible for the suppressed reflectance values within and near the ore deposits.


1985 ◽  
Vol 22 (12) ◽  
pp. 1890-1892 ◽  
Author(s):  
R. W. Macqueen

The following seven papers were presented on May 16, 1984, at the Geological Association of Canada and Mineralogical Association of Canada joint annual meeting. The special session, organized by R. W. Macqueen and J. A. Coope, contained 10 papers and was sponsored by the Mineral Deposits Division of the Geological Association of Canada.Our objective in organizing the special session was to examine organically based processes and relationships that may be of major importance to the origin of ore deposits. As noted by Fyfe (1984), the concept of the geochemical cycle focuses attention on pathways of chemical elements and isotopes of the Earth's system during geologic history. It is clear from the chemistry of carbon-rich materials that a wide range of elements is concentrated directly or indirectly by biological processes operating as part of the geochemical cycle. Two of the papers of the special session examine some of these concentration processes, although definitive links to actual ore deposits cannot be made yet. Beveridge and Fyfe document the remarkable ability of the anionic cell walls of certain bacteria to concentrate metals and to provide sites for nucleation and growth of minerals. In a related paper, Mann and Fyfe show that several species of simple freshwater green algae readily concentrate large amounts of uranium under both experimental and natural conditions (Elliot Lake and Thames River, Ontario).Two papers deal with aspects of sulphate reduction. Birnbaum and Wireman describe controlled experiments that suggest that sulphate-reducing bacteria may be involved in the selective replacement of sulphate-evaporite minerals by silica and in the precipitation of silica in association with sulphide mineral phases in banded iron formations. Their work focuses directly on the effect that bacterial sulphate reduction has on silica solubility. Trudinger et al. examine the question of mechanisms of sulphate reduction at temperatures less than 200 °C and the bearing this has on origin of sulphide for low-temperature sulphide ore deposits. Although there is empirical evidence favouring abiological sulphate reduction at temperatures in the vicinity of 100 °C, Trudinger et al. have not been able to demonstrate abiological reduction of sulphate under controlled laboratory conditions and at temperatures under about 200 °C. Perhaps catalysts, as yet undiscovered, are involved in this process in nature.Impressive progress has been made in understanding the diagenetic evolution of organic matter in response to heat and pressure in geological environments: excellent reviews are found in Barnes et al. (1984) and Bustin et al. (1985). Simoneit's paper examines and reviews the genesis of petroleum in a most unusual setting, that of the active ocean ridge spreading centre of Guaymas Basin, Gulf of California. There, in the vicinity of black smokers and associated metallic sulphide deposits, petroleum originates instantaneously geologically as a result of hydrothermal activity. The question of genetic involvement of organic matter in the origin of the metallic sulphides (e.g., reduction of sulphate to H2S) cannot be answered yet for this setting with the available data.The final two special session papers included here are concerned with organic matter associated with mineralization in Canadian Shield Precambrian settings. Willingham et al. demonstrate that Elliot Lake – Blind River Early Proterozoic uranium deposits with minor amounts of associated gold also contain kerogen-like organic matter. Some of this organic matter has anomalously rich amounts of gold and uranium and appears to have originated as mats of cyanobacteria, possibly with the ability to concentrate these metals. For a number of settings in the Archean-aged Abitibi greenstone belt of Ontario and Quebec, Springer demonstrates that carbon, at least partly of organic origin, is closely associated with some gold deposits. Her interpretation is that carbon activated by shear-zone-associated hydrothermal fluids has provided sites for fixing some of the gold.Three of the papers given at the special session are not included here. H. T. Shacklette reviewed metal uptake by young conifer trees, demonstrating that nursery-grown seedlings of several species readily concentrated a variety of metals, including lead, zinc, tin, and gold, over a 7 year period. This work is of interest to those involved in geochemical prospecting and is now published elsewhere (King et al. 1984). R. W. Macqueen presented quantitative data on the genesis of sulphide by abiological bitumen–sulphate reactions at the Pine Point lead–zinc property, Northwest Territories, Canada (Macqueen and Powell 1983; Powell and Macqueen 1984). Although Trudinger et al. have not been able to demonstrate abiological reduction of sulphate at temperatures approximating those of Pine Point [Formula: see text], the data presented by Macqueen (Powell and Macqueen 1984) are consistent with the amounts, alteration, and composition of bitumens at Pine Point, as well as with the presence of native sulphur and the sulphur isotope compositions of the various Pine Point sulphur species. This work is continuing, and a more extensive account is in preparation. J. R. Watterson examined relationships between freezing climates and the local chemical behaviour of gold in the weathering cycle, concluding that ice-induced accumulation of organic acids, bacteria, and other organic matter at mineral surfaces may increase rates of chemical attack, leading to dissolution of normally insoluble metals such as gold (Watterson 1986).Interest in organic aspects of the geochemical cycle, including ore deposition, is growing dramatically (e.g., Fyfe 1984). Although the following papers address a limited range of topics within the field, they do indicate some of the diversity and variety of active processes and associations between metallic elements and organic components. Perhaps, in the not too distant future, we will be able to identify or even discover whole classes of ore deposits that owe their origin directly to organic influences operating within the geochemical cycle.


2021 ◽  
Author(s):  
Holly Stein

<p>Re and Os (rhenium and osmium) are chalcophile-siderophile elements (transition metals) with a unique position in isotope geochemistry.  Unlike other commonly used decay schemes for radiometric dating, these metals take residency in resource-related media, for example, sulfide minerals, the organic component in black shales, coals, and bitumens and oils.  In sum, the reducing environment is their haven whereas under oxidizing conditions, Re and Os become unmoored and the radiometric clock becomes compromised.  The clock is not temperature sensitive, and its applicability spans Early Archean to Pleistocene. </p><p>This Bunsen Medal lecture will explore and review the challenges in bringing Re-Os from the meteorite-mantle community into the crustal environment.  At the center of it all is our ability to turn geologic observation into a thoughtful sampling strategy.  The potential to date ore deposits was an obvious application and molybdenite [Mo(Re)S<sub>2</sub>], rarely with significant common Os and rarely with overgrowths, became an overnight superstar, yielding highly precise, accurate, and reproducible ages.  Yet, molybdenite presented our first sampling challenge with recognition of a puzzling parent-daughter (<sup>187</sup>Re-<sup>187</sup>Os) decoupling in certain occurrences.  A strategic sampling procedure was employed.  From there, the diversity of applications spread, as molybdenite is also an accessory mineral in many granitoids, and can be a common trace sulfide in metamorphic rocks.  Whether conformable with and/or crosscutting foliation, molybdenite ages define the timing of deformational events.  Pyrite and arsenopyrite can also be readily dated. </p><p>Applications jumped from sulfides to organic matter.  The hydrogenous component from organic matter in black shales gives us Re-Os ages in the sedimentary record for the Geologic Time Scale.  This led to construction of an Os isotope seawater curve – an ongoing process.  Unlike the well-known Sr seawater curve, the short residence time of Os in the oceans creates a high-definition time record with unambiguous high-amplitude swings in <sup>187</sup>Os/<sup>188</sup>Os.  Re-Os puts time pins into the biostratigraphic record, and we have even directly dated fossils.  Re-Os opened the door for a new generation of paleoclimate studies to evaluate seawater conditions at the time of organic blooms and organic sequestration in bottom mud.  Uplift and continental erosion can be balanced with hydrothermal input into oceans based on changes in the Os isotope composition of seawater.  The timing and connectivity of opening seaways can be determined, and the timing of glaciation and deglaciation events can be globally correlated.  The timing and instigators of mass extinctions are carried in the Re-Os record.  A major meteorite impact places an enormous scar in the Os isotope record as seawater drops toward mantle values but recovers in just a few thousand years.  Most recently, Re-Os has transformed our understanding of the events and fluids involved in construction of whole petroleum systems. </p><p>Looking to the future, what kinds of data sets will be explored and what are the interdisciplinary skill sets needed to interpret those data?  Re-Os will continue to provide us with new ways to dismantle geologic media for new scientific understanding of processes that have shaped our lithosphere, biosphere and hydrosphere, recording their intersection and exchange. </p>


2004 ◽  
Vol 25 (1) ◽  
pp. 36 ◽  
Author(s):  
Craig P Marshall ◽  
Karen L Mackenzie ◽  
Junhong Chen ◽  
Dorothy Z Oehler ◽  
Graham A Logan ◽  
...  

The 1640 Ma (million years old) Here?s Your Chance (HYC) deposit at McArthur River, Northern Territory, Australia is one of the largest and least metamorphosed lead-zinc-silver deposits in the world. The mineralised interval has been divided into several orebodies and is separated by relatively barren sediment.


2021 ◽  
Author(s):  
Natalia Shulga ◽  
Sergej Abramov ◽  
Sergej Gavrilov ◽  
Konstantin Ryazantsev

<p>This work is based on ferromanganese nodules, crusts and underlying sediments collected from the different parts of the Kara Sea shelf (Arctic). The geochemistry, morphology and organic matter content of nodules, crusts and sediments were determined with ICP-MS, SEM-EDS and GC/MS. The associated microbial communities were identified with 16S rRNA (gene) sequencing. Nodules from the Kara Sea shelf significantly differ from their more common abyssal analogues. These shelf nodules have an irregular tabular morphology and relatively low abundances of Mn (up to 19 wt.%), Fe (up to 24 wt.%), other trace metals and the REYs. The Kara Sea nodules show concentric layering that is also typical of deep-sea diagenetic nodules. Samples subdivided into two groups: Mn-rich (Mn/Fe = 0.35 on av.) and Fe-rich (Mn/Fe = 1.65 on av.). The negative Ce anomaly suggests a diagenetic origin of the nodules and crusts. The input of organic matter to the ore deposits in the study area has three main sources (according to n-alkane composition): 1) marine (planctonogenic); 2) low-transformed terrestrial organic matter derived from river run-off; 3) microbial-derived source. Microbial communities of nodules and crusts are substantially different from benthic microbial communities in sediments. They dominated by taxa involved in N cycle, particularly responsible for denitrification (<em>Cyclobacteriaceae</em> and <em>Kiloniellaceae</em>), nitrification (“<em>Candidatus Nitrosopumilus</em>” and <em>Nitrosomonas</em>), comammox (<em>Nitrospira</em>) and anammox (<em>Nitrosococcaceae</em>) [1]. Dissimilatory Fe(III)- and Mn(IV)-reducing Geopsychrobacter was identified in Fe-rich ore samples. This taxon can be involved in Fe(III)- and Mn(IV)-dependent anaerobic oxidation of methane [2]. In contrast, microbial community of underlying sediments dominated by sulfate-reducing bacteria (SRB). Some of the identified SRB (e.g. <em>Desulfobulbaceae</em> and <em>Desulfosarcinaceae</em>) are able to form syntrophic associations with anaerobic methanotrophic archaea [3]. Identified n-alkanes can be oxidized by <em>Anaerolineaceae</em> growing in syntrophic association with methanogens. Furthermore, we revealed that manganese nodules and crusts can be used potentially as important electron acceptors for oxidation of organic compounds by <em>Geopsychrobacter</em>, <em>Desulfuromonadales</em> and <em>Colwellia</em>. Applied multi-disciplinary approach to the study of the Fe-Mn nodules and crusts will help to determine their contribution in formation of unique biogeochemical environments in the Kara Sea.</p><p>This work was supported by the Russian Science Foundation (grant 19-77-00107).</p>


Sign in / Sign up

Export Citation Format

Share Document