geochemical cycle
Recently Published Documents


TOTAL DOCUMENTS

89
(FIVE YEARS 13)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Ramon Reifenröther ◽  
Carsten Münker ◽  
Holger Paulick ◽  
Birgit Scheibner
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Eva Duborská ◽  
Katarína Balíková ◽  
Michaela Matulová ◽  
Ondřej Zvěřina ◽  
Bence Farkas ◽  
...  

Iodine is an essential micronutrient for most of the living beings, including humans. Besides its indispensable role in animals, it also plays an important role in the environment. It undergoes several chemical and biological transformations resulting in the production of volatile methylated iodides, which play a key role in the iodine’s global geochemical cycle. Since it can also mitigate the process of climate change, it is reasonable to study its biogeochemistry. Therefore, the aim of this review is to provide information on its origin, global fluxes and mechanisms of production in the environment.


2021 ◽  
Vol 13 (22) ◽  
pp. 12796
Author(s):  
Tian Lan ◽  
Libo Hao ◽  
Jilong Lu ◽  
Yechang Yin ◽  
Xiaoqing Chen ◽  
...  

Rock weathering is the main source of element geochemical cycle, which has a very important impact on the environment. Three well-developed basalt weathering profiles in Changbai Mountain area are selected in this study, and the samples of parent rock, parent material layer, sedimentary layer, and leaching layer are systematically collected. The systematic study showed that the basalt in the study area experienced moderate chemical weathering under warm and humid climate conditions, with leaching of some major elements such as silicon and aluminum. The distribution of the rare earth elements (REE) in the weathering products recalls that of an alkali-basalt, with an evident fractionation between light- and heavy-REE. Such a feature is therefore referable to the parent volcanic rock, although with some degree of leaching.


2021 ◽  
Vol 56 (4) ◽  
pp. 293-308
Author(s):  
A. Yu. Lein ◽  
M. D. Kravchishina
Keyword(s):  

Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 608
Author(s):  
Hui Liu ◽  
Yingying Pu ◽  
Xiaojun Qiu ◽  
Zhi Li ◽  
Bing Sun ◽  
...  

Dissolved organic matter (DOM) is considered to play an important role in the abiotic transformation of organobromine compounds in marine environment, for it produces reactive intermediates photochemically and is recognized as a significant source of reactive halogen species in seawater. However, due to the complex composition of DOM, the relationship between the natural properties of DOM and its ability to produce organobromine compounds is less understood. Here, humic acid (HA) was extracted and fractionated based on the polarity and hydrophobicity using silica gel, and the influences of different fractions (FA, FB and FC) on the photochemical bromination of phenol was investigated. The structural properties of HA fractions were characterized by UV-vis absorption, Fourier transform infrared spectroscopy and fluorescence spectroscopy, and the photochemical reactivity of HA fractions was assessed by probing triplet dissolved organic matter (3DOM*), singlet oxygen (1O2) and hydroxyl radical (•OH). The influences of HA fractions on the photo-bromination of phenol were investigated in aqueous bromide solutions under simulated solar light irradiation. FA and FB with more aromatic and polar contents enhanced the photo-bromination of phenol more than the weaker polar and aromatic FC. This could be attributed to the different composition and chemical properties of the three HAs’ fractions and their production ability of •OH and 3DOM*. Separating and investigating the components with different chemical properties in DOM is of great significance for the assessment of their environmental impacts on the geochemical cycle of organic halogen.


2021 ◽  
Vol 208 ◽  
pp. 111507
Author(s):  
Yongqiang Ning ◽  
Jinling Liu ◽  
Xianyu Huang ◽  
Pengcong Wang ◽  
Shaochen Yang ◽  
...  

2020 ◽  
Vol 117 (18) ◽  
pp. 9747-9754 ◽  
Author(s):  
Carole Nisr ◽  
Huawei Chen ◽  
Kurt Leinenweber ◽  
Andrew Chizmeshya ◽  
Vitali B. Prakapenka ◽  
...  

Sub-Neptunes are common among the discovered exoplanets. However, lack of knowledge on the state of matter in H2O-rich setting at high pressures and temperatures (P−T) places important limitations on our understanding of this planet type. We have conducted experiments for reactions between SiO2 and H2O as archetypal materials for rock and ice, respectively, at high P−T. We found anomalously expanded volumes of dense silica (up to 4%) recovered from hydrothermal synthesis above ∼24 GPa where the CaCl2-type (Ct) structure appears at lower pressures than in the anhydrous system. Infrared spectroscopy identified strong OH modes from the dense silica samples. Both previous experiments and our density functional theory calculations support up to 0.48 hydrogen atoms per formula unit of (Si1−xH4x)O2 (x=0.12). At pressures above 60 GPa, H2O further changes the structural behavior of silica, stabilizing a niccolite-type structure, which is unquenchable. From unit-cell volume and phase equilibrium considerations, we infer that the niccolite-type phase may contain H with an amount at least comparable with or higher than that of the Ct phase. Our results suggest that the phases containing both hydrogen and lithophile elements could be the dominant materials in the interiors of water-rich planets. Even for fully layered cases, the large mutual solubility could make the boundary between rock and ice layers fuzzy. Therefore, the physical properties of the new phases that we report here would be important for understanding dynamics, geochemical cycle, and dynamo generation in water-rich planets.


Sign in / Sign up

Export Citation Format

Share Document