Resonant Absorption of MHD Waves in Magnetic Loops in the Solar Corona

Author(s):  
Marcel Goossens
1994 ◽  
Vol 144 ◽  
pp. 443-451 ◽  
Author(s):  
F. Malara ◽  
M. Velli

AbstractDissipation of MHD waves generated in the lower solar atmosphere has long been proposed as a means to heat the solar corona. Because of the extremely low dissipation coefficients of the coronal plasma large gradients are necessary to efficiently dissipate such waves. Interactions with the inhomogeneities of the background medium may represent a way to create small scale structures, phase-mixing and resonant absorption being important examples. The generalization of such ideas to propagation in complex geometries (e.g., containing X type neutral points) and the extension to nonlinear effects are paramount to the development of wave-heating theories.


1998 ◽  
Vol 185 ◽  
pp. 467-468
Author(s):  
S. Parhi ◽  
B.P. Pandey ◽  
M. Goossens ◽  
G.S. Lakhina

The solar corona supports a variety of waves generated by convective upwelling motion in the photosphere. In order to explain the observed coronal temperature profile, resonant absorption of MHD waves by coronal plasma (Goossens et al, 1995) has been proposed as a possible candidate. The physical picture is that the footpoint motion in the photosphere constantly stirs the coronal plasma leading to the MHD wave generation which is then resonantly absorbed producing the enhanced heating of the corona. Here we consider the problem of MHD wave propagation in a twisted solar corona.


1994 ◽  
Vol 144 ◽  
pp. 503-505
Author(s):  
R. Erdélyi ◽  
M. Goossens ◽  
S. Poedts

AbstractThe stationary state of resonant absorption of linear, MHD waves in cylindrical magnetic flux tubes is studied in viscous, compressible MHD with a numerical code using finite element discretization. The full viscosity tensor with the five viscosity coefficients as given by Braginskii is included in the analysis. Our computations reproduce the absorption rates obtained by Lou in scalar viscous MHD and Goossens and Poedts in resistive MHD, which guarantee the numerical accuracy of the tensorial viscous MHD code.


2013 ◽  
Vol 8 (S300) ◽  
pp. 30-39 ◽  
Author(s):  
J. L. Ballester

AbstractQuiescent solar prominences are cool and dense plasma clouds located inside the hot and less dense solar corona. They are highly dynamic structures displaying flows, instabilities, oscillatory motions, etc. The oscillations have been mostly interpreted in terms of magnetohydrodynamic (MHD) waves, which has allowed to perform prominence seismology as a tool to determine prominence physical parameters difficult to measure. Here, several prominence seismology applications to large and small amplitude oscillations are reviewed.


2018 ◽  
Vol 145 ◽  
pp. 03009 ◽  
Author(s):  
Todor M. Mishonov ◽  
Albert M. Varonov ◽  
Nedeltcho I. Zahariev ◽  
Rositsa V. Topchiyska ◽  
Boian V. Lazov ◽  
...  

The sharp almost step like increase the temperature in the transition region (TR) between chromosphere and solar corona is well-known from decades; for first time we are giving a detailed magnetohydrodynamic (MHD) calculation of the height dependence of the temperature. The width of the transition region is evaluated by maximal value of the logarithmic derivative of the temperature. At fixed heating, only MHD can give such a narrow width and in such sense, even the qualitative agreement with the observational data, gives the final verdict what the heating mechanism of the solar corona is. Static profiles of the temperature and wind velocity are calculated for static frequency dependent spectral density of the incoming MHD waves; no time dependent computer simulations. At fixed spectral density of MHD waves, the MHD calculation predicts height dependence of the non-thermal broadening of spectral lines and its angular dependence. For illustration is used one dimensional approximation of completely ionized hydrogen plasma in weak magnetic field, but it is considered that the width of the TR is weakly dependent with respect of further elaboration. The analyzed MHD calculation is a numerical confirmation of the qualitative concept of self-induced opacity of the plasma with respect to MHD waves. The plasma viscosity strongly increases with the temperature. Heated by MHD waves, plasma increases the wave absorption and this positive feedback leads to further heating. The static temperature profile is a result of a self-consistent calculation of propagation of MHD wave through the static background of wind and temperature profile. The numerical method allows consideration of incoming MHD waves with an arbitrary spectral density. Further elaboration of the method are briefly discussed: influence of second viscosity in the chromospheric part of the TR, influence of the magnetic field on the coronal side of the TR and investigation of such type effects on the width of the TR.


2019 ◽  
Vol 626 ◽  
pp. A53 ◽  
Author(s):  
P. Pagano ◽  
H. J. Van Damme ◽  
P. Antolin ◽  
I. De Moortel

Context. Magnetohydrodynamic (MHD) waves are ubiquitous in the solar corona where the highly structured magnetic fields provide efficient wave guides for their propagation. While MHD waves have been observed originating from lower layers of the solar atmosphere, recent studies have shown that some can be generated in situ by the collision of dense counter-propagating flows. Aims. In this theoretical study, we analyse the mechanism that triggers the propagation of kink and sausage modes in the solar corona following the collision of counter-propagating flows, and how the properties of the flows affect the properties of the generated waves. Methods. To study in detail this mechanism we ran a series of ideal 2D and 3D MHD simulations where we varied the properties of the counter-propagating flows; by means of a simple technique to estimate the amplitudes of the kink and sausage modes, we investigated their role in the generation and propagation of the MHD waves. Results. We find that the amplitude of the waves is largely dependent on the kinetic energy of the flows, and that the onset of kink or sausage modes depends on the asymmetries between the colliding blobs. Moreover, the initial wavelength of the MHD waves is associated with the magnetic configuration resulting from the collision of the flows. We also find that genuine 3D systems respond with smaller wave amplitudes. Conclusions. In this study, we present a parameter space description of the mechanism that leads to the generation of MHD waves from the collision of flows in the corona. Future observations of these waves can be used to understand the properties of the plasma and magnetic field of the solar corona.


2001 ◽  
Vol 203 ◽  
pp. 353-355 ◽  
Author(s):  
V. M. Nakariakov

Recent discoveries of MHD wave motions in the solar corona done with EUV imaging telescopes onboard SOHO and TRACE provide an observational basis for the MHD seismology of the corona. Measuring the properties of MHD waves and oscillations (periods, wavelengths, amplitudes, temporal and spatial signatures), combined with theoretical modeling of the wave phenomena, allow us to determine values of the mean parameters of the corona (the magnetic field strength, transport coefficients, etc.). As an example, we consider post-flare decaying oscillations of loops, observed with TRACE (14th July 1998 at 12:55 UT). An analysis of the oscillations shows that they are quasi-harmonic, with a period of about 265 s, and quickly decaying with the decay time of about 14.5 min. The period of oscillations allows us to determine the Alfvén speed in the oscillating loop about 770 km/s. This value can be used for deduction of the value of the magnetic field in the loop (giving 10-30 G). The decay time, in the assumption that the decay is caused by viscous (or resistive) dissipation, gives us the Reynolds number of 105.3-6.1 (or the Lundquist number of 105.0-5.8).


2000 ◽  
Vol 64 (3) ◽  
pp. 235-247 ◽  
Author(s):  
I. BALLAI ◽  
R. ERDÉLYI ◽  
M. GOOSSENS

The theory of resonant nonlinear magnetohydrodynamic (MHD) waves in dissipative steady plasmas developed by Ballai and Erdélyi is used to study the effect of steady flows on nonlinear resonant heating of MHD waves in (a) linear, (b) weakly and (c) strongly nonlinear approximations. Nonlinear connection formulae for slow MHD waves are derived. This nonlinear theory of driven MHD waves is then used to study the interaction of sound waves with one-dimensional isotropic steady plasmas. We find that a steady equilibrium flow can significantly influence the efficiency of resonant absorption in the considered limits. In the case of strong nonlinearity, the efficiency of the resonant coupling is found to be proportional to the counterpart obtained in linear theory. The factor of proportion is approximately of the order of unity, justifying the commonly applied linear approximations.


Sign in / Sign up

Export Citation Format

Share Document