Adaptive Estimation and Structural Change in Regression and Time Series Models

Author(s):  
Johannes Ledolter
1995 ◽  
Vol 11 (5) ◽  
pp. 818-887 ◽  
Author(s):  
P. Jeganathan

The primary purpose of this paper is to review a very few results on some basic elements of large sample theory in a restricted structural framework, as described in detail in the recent book by LeCam and Yang (1990, Asymptotics in Statistics: Some Basic Concepts. New York: Springer), and to illustrate how the asymptotic inference problems associated with a wide variety of time series regression models fit into such a structural framework. The models illustrated include many linear time series models, including cointegrated models and autoregressive models with unit roots that are of wide current interest. The general treatment also includes nonlinear models, including what have become known as ARCH models. The possibility of replacing the density of the error variables of such models by an estimate of it (adaptive estimation) based on the observations is also considered.Under the framework in which the asymptotic problems are treated, only the approximating structure of the likelihood ratios of the observations, together with auxiliary estimates of the parameters, will be required. Such approximating structures are available under quite general assumptions, such as that the Fisher information of the common density of the error variables is finite and nonsingular, and the more specific assumptions, such as Gaussianity, are not required. In addition, the construction and the form of inference procedures will not involve any additional complications in the non-Gaussian situations because the approximating quadratic structure actually will reduce the problems to the situations similar to those involved in the Gaussian cases.


1997 ◽  
Vol 25 (2) ◽  
pp. 786-817 ◽  
Author(s):  
Feike C. Drost ◽  
Chris A. J. Klaassen ◽  
Bas J. M. Werker

Marketing ZFP ◽  
2010 ◽  
Vol 32 (JRM 1) ◽  
pp. 24-29
Author(s):  
Marnik G. Dekimpe ◽  
Dominique M. Hanssens

2020 ◽  
Vol 5 (1) ◽  
pp. 374
Author(s):  
Pauline Jin Wee Mah ◽  
Nur Nadhirah Nanyan

The main purpose of this study is to compare the performances of univariate and bivariate models on four time series variables of the crude palm oil industry in Peninsular Malaysia. The monthly data for the four variables, which are the crude palm oil production, price, import and export, were obtained from Malaysian Palm Oil Board (MPOB) and Malaysian Palm Oil Council (MPOC). In the first part of this study, univariate time series models, namely, the autoregressive integrated moving average (ARIMA), fractionally integrated autoregressive moving average (ARFIMA) and autoregressive autoregressive (ARAR) algorithm were used for modelling and forecasting purposes. Subsequently, the dependence between any two of the four variables were checked using the residuals’ sample cross correlation functions before modelling the bivariate time series. In order to model the bivariate time series and make prediction, the transfer function models were used. The forecast accuracy criteria used to evaluate the performances of the models were the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results of the univariate time series showed that the best model for predicting the production was ARIMA  while the ARAR algorithm were the best forecast models for predicting both the import and export of crude palm oil. However, ARIMA  appeared to be the best forecast model for price based on the MAE and MAPE values while ARFIMA  emerged the best model based on the RMSE value.  When considering bivariate time series models, the production was dependent on import while the export was dependent on either price or import. The results showed that the bivariate models had better performance compared to the univariate models for production and export of crude palm oil based on the forecast accuracy criteria used.


Sign in / Sign up

Export Citation Format

Share Document