Nutrient Limitation and Bacteria — Phytoplankton Interactions in Humic Lakes

Author(s):  
Mats Jansson
2001 ◽  
Vol 46 (5) ◽  
pp. 653-666 ◽  
Author(s):  
Mats Jansson ◽  
Ann-Kristin Bergström ◽  
Stina Drakare ◽  
Peter Blomqvist

Author(s):  
Néstor David Giraldo ◽  
Sandra Marcela Correa ◽  
Andrés Arbeláez ◽  
Felix L. Figueroa ◽  
Rigoberto Ríos-Estepa ◽  
...  

AbstractIn this study the metabolic responses of Botryococcus braunii were analyzed upon different inorganic carbon dosages and nutrient limitation conditions in terms of lipid and biomass productivity, as well as photosynthetic performance. The nutritional schemes evaluated included different levels of sodium bicarbonate and nitrogen and phosphorus starvation, which were contrasted against standard cultures fed with CO2. Bicarbonate was found to be an advantageous carbon source since high dosages caused a significant increase in biomass and lipid productivity, in addition to an enhanced photosynthetic quantum yield and neutral lipids abundance. This contrasts to the commonly used approach of microalgae nutrient limitation, which leads to high lipid accumulation at the expense of impaired cellular growth, causing a decline in overall lipid productivity. The lipidome analysis served to hypothesize about the influence of the nutritional context on B. braunii structural and storage lipid metabolism, besides the adaptive responses exhibited by cells that underwent nutrient stress.


2021 ◽  
Vol 7 (16) ◽  
pp. eabe5544
Author(s):  
Zeenat Rashida ◽  
Rajalakshmi Srinivasan ◽  
Meghana Cyanam ◽  
Sunil Laxman

In changing environments, cells modulate resource budgeting through distinct metabolic routes to control growth. Accordingly, the TORC1 and SNF1/AMPK pathways operate contrastingly in nutrient replete or limited environments to maintain homeostasis. The functions of TORC1 under glucose and amino acid limitation are relatively unknown. We identified a modified form of the yeast TORC1 component Kog1/Raptor, which exhibits delayed growth exclusively during glucose and amino acid limitations. Using this, we found a necessary function for Kog1 in these conditions where TORC1 kinase activity is undetectable. Metabolic flux and transcriptome analysis revealed that Kog1 controls SNF1-dependent carbon flux apportioning between glutamate/amino acid biosynthesis and gluconeogenesis. Kog1 regulates SNF1/AMPK activity and outputs and mediates a rapamycin-independent activation of the SNF1 targets Mig1 and Cat8. This enables effective glucose derepression, gluconeogenesis activation, and carbon allocation through different pathways. Therefore, Kog1 centrally regulates metabolic homeostasis and carbon utilization during nutrient limitation by managing SNF1 activity.


Ecology ◽  
2021 ◽  
Author(s):  
Lettice C. Hicks ◽  
Kate Lajtha ◽  
Johannes Rousk

Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 223
Author(s):  
Dāvis Ozoliņš ◽  
Agnija Skuja ◽  
Jolanta Jēkabsone ◽  
Ilga Kokorite ◽  
Andris Avotins ◽  
...  

Highly humic lakes are typical for the boreal zone. These unique ecosystems are characterised as relatively undisturbed habitats with brown water, high acidity, low nutrient content and lack of macrophytes. Current lake assessment methods are not appropriate for ecological assessment of highly humic lakes because of their unique properties and differing human pressures acting on these ecosystems. This study proposes a new approach suitable for the ecological status assessment of highly humic lakes impacted by hydrological modifications. Altogether, 52 macroinvertebrate samples from 15 raised bog lakes were used to develop the method. The studied lakes are located in the raised bogs at the central and eastern parts of Latvia. Altered water level was found as the main threat to the humic lake habitats since no other pressures were established. A multimetric index based on macroinvertebrate abundance, littoral and profundal preferences, Coleoptera taxa richness and the Biological Monitoring Working Party (BMWP) Score is suggested as the most suitable tool to assess the ecological quality of the highly humic lakes.


Sign in / Sign up

Export Citation Format

Share Document