scholarly journals The Atmospheric Neutrino Anomaly: Muon Neutrino Disappearance

Author(s):  
John G. Learned
2003 ◽  
Vol 18 (29) ◽  
pp. 2001-2018 ◽  
Author(s):  
G. Giacomelli ◽  
A. Margiotta

In this paper we describe the main results obtained by the MACRO experiment: final stringent upper limits on GUT magnetic monopoles and nuclearites, results on atmospheric neutrino oscillations, high energy muon neutrino astronomy, searches for WIMPs, search for low energy stellar gravitational collapse neutrinos, several studies with high energy downgoing muons and determination of the primary cosmic ray composition at knee energies.


2019 ◽  
Vol 207 ◽  
pp. 05006
Author(s):  
Tim Ruhe

As the energy of an incident neutrino cannot be accessed experimentally, muon neutrino energy spectra have to be inferred from energy-dependent observables, using deconvolution algorithms. This paper discusses the challenges associated with the application of deconvolution algorithms and presents two examples of spectral measurements obtained using the IceCube neutrino telescope in the 59- and 79-string configuration.


2019 ◽  
Vol 46 (6) ◽  
pp. 065001 ◽  
Author(s):  
Zubair Ahmad Dar ◽  
Daljeet Kaur ◽  
Sanjeev Kumar ◽  
Md Naimuddin

2002 ◽  
Vol 17 (24) ◽  
pp. 3364-3377 ◽  
Author(s):  
◽  
C. K. JUNG

K2K is a long baseline neutrino oscillation experiment using a neutrino beam produced at the KEK 12 GeV PS, a near detector complex at KEK and a far detector (Super-Kamiokande) in Kamioka, Japan. The experiment was constructed and is being operated by an international consortium of institutions from Japan, Korea, and the US. The experiment started taking data in 1999 and has successfully taken data for about two years. K2K is the first long beseline neutrino oscillation experiment with a baseline of order hundreds of km and is the first accelerator based neutrino oscillation experiment that is sensitive to the Super-Kamiokande allowed region obtained from the atmospheric neutrino oscillation analysis. A total of 44 events have been observed in the far detector during the period of June 1999 to April 2001 corresponding to 3.85 × 1019 protons on target. The observation is consistent with the neutrino oscillation expectations based on the oscillation parameters derived from the atmospheric neutrinos, and the probability that this is a statistical fluctuation of non-oscillation expectation of [Formula: see text] is less than 3%.


1963 ◽  
Vol 6 (1) ◽  
pp. 67-69 ◽  
Author(s):  
P. Dennery ◽  
H. Primakoff

1998 ◽  
Vol 439 (1-2) ◽  
pp. 123-129 ◽  
Author(s):  
R.P. Thun ◽  
S. McKee
Keyword(s):  

1994 ◽  
Vol 09 (02) ◽  
pp. 169-179 ◽  
Author(s):  
R. FOOT

We re-examine neutrino oscillations in exact parity models. Previously it was shown in a specific model that large neutrino mixing angles result. We show here that this is a general result of neutrino mixing in exact parity models provided that the neutrino mass matrix is real. In this case, the effects of neutrino mixing in exact parity models is such that the probability of a given weak eigenstate remaining in that eigenstate averages to less than half when averaged over many oscillations. This result is interesting in view of the accumulating evidence for a significant deficit in the number of solar neutrinos. It may also be of relevance to the atmospheric neutrino anomaly.


Sign in / Sign up

Export Citation Format

Share Document