On a method of mass determination for the muon-neutrino

1963 ◽  
Vol 6 (1) ◽  
pp. 67-69 ◽  
Author(s):  
P. Dennery ◽  
H. Primakoff
Author(s):  
M. K. Lamvik ◽  
A. V. Crewe

If a molecule or atom of material has molecular weight A, the number density of such units is given by n=Nρ/A, where N is Avogadro's number and ρ is the mass density of the material. The amount of scattering from each unit can be written by assigning an imaginary cross-sectional area σ to each unit. If the current I0 is incident on a thin slice of material of thickness z and the current I remains unscattered, then the scattering cross-section σ is defined by I=IOnσz. For a specimen that is not thin, the definition must be applied to each imaginary thin slice and the result I/I0 =exp(-nσz) is obtained by integrating over the whole thickness. It is useful to separate the variable mass-thickness w=ρz from the other factors to yield I/I0 =exp(-sw), where s=Nσ/A is the scattering cross-section per unit mass.


2020 ◽  
Vol 64 (1) ◽  
pp. 135-153 ◽  
Author(s):  
Lauren Elizabeth Smith ◽  
Adelina Rogowska-Wrzesinska

Abstract Post-translational modifications (PTMs) are integral to the regulation of protein function, characterising their role in this process is vital to understanding how cells work in both healthy and diseased states. Mass spectrometry (MS) facilitates the mass determination and sequencing of peptides, and thereby also the detection of site-specific PTMs. However, numerous challenges in this field continue to persist. The diverse chemical properties, low abundance, labile nature and instability of many PTMs, in combination with the more practical issues of compatibility with MS and bioinformatics challenges, contribute to the arduous nature of their analysis. In this review, we present an overview of the established MS-based approaches for analysing PTMs and the common complications associated with their investigation, including examples of specific challenges focusing on phosphorylation, lysine acetylation and redox modifications.


2019 ◽  
Vol 207 ◽  
pp. 05006
Author(s):  
Tim Ruhe

As the energy of an incident neutrino cannot be accessed experimentally, muon neutrino energy spectra have to be inferred from energy-dependent observables, using deconvolution algorithms. This paper discusses the challenges associated with the application of deconvolution algorithms and presents two examples of spectral measurements obtained using the IceCube neutrino telescope in the 59- and 79-string configuration.


2019 ◽  
Vol 46 (6) ◽  
pp. 065001 ◽  
Author(s):  
Zubair Ahmad Dar ◽  
Daljeet Kaur ◽  
Sanjeev Kumar ◽  
Md Naimuddin

2020 ◽  
Vol 2020 (6) ◽  
Author(s):  
Wan-Li Ju ◽  
Guoxing Wang ◽  
Xing Wang ◽  
Xiaofeng Xu ◽  
Yongqi Xu ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Evamaria C. Gaugler ◽  
Wolfgang Radke ◽  
Andrew P. Vogt ◽  
Dawn A. Smith

AbstractMolar masses, Mark-Houwink-Sakurada (MHS) exponents, and refractive index increments (dn/dc) for three lignins were determined without derivatization by multi-detector gel permeation chromatography (GPC) in dimethylformamide (DMF) with 0.05 M lithium bromide (LiBr). The lack of effectiveness of fluorescence filters on molar mass determination by GPC-multi-angle laser light scattering (MALS) was confirmed for softwood kraft lignin (Indulin AT) and revealed for mixed hardwood organosolv lignin (Alcell) as well as soda straw/grass lignin (Protobind 1000). GPC with viscometry detection confirmed that these lignins were present as compact molecules. The MHS exponent α for Indulin AT and Alcell was in the order of 0.1. Additionally, the intrinsic viscosity of Protobind 1000 for a given molar mass was much lower than that of either Alcell or Indulin AT. This is the first report of dn/dc values for these three lignins in DMF with 0.05 M LiBr.


Sign in / Sign up

Export Citation Format

Share Document