Differential Operators for Circular Cylindrical Shells (Shear Deformation Theory)

Author(s):  
Holm Altenbach ◽  
Johannes Altenbach ◽  
Wolfgang Kissing
2021 ◽  
Vol 26 (3) ◽  
pp. 141-162
Author(s):  
C.U. Nwoji ◽  
D.G. Ani ◽  
O.A. Oguaghamba ◽  
V.T. Ibeabuchi

Abstract In this paper, a displacement based shear deformation theory formulated on the cubic in-plane displacement field equation of Reddy and Liu is presented for the static bending analysis of isotropic circular cylindrical shells. The adopted displacement field accounts for a quadratic (parabolic) distribution of the transverse shear through the shell thickness as well as satisfies the need for a stress free upper and lower boundary surfaces of the shell. The equations of static equilibrium are obtained on application of the principle of virtual work. Numerical results of the bending analysis for the displacements and stresses are presented for the simply supported shell. A comparison made to those of the Kirchhoff-Love theory for varying shell length to mean – radius of curvature ratios, shows good agreement for thin shells irrespective of the shell length to radius of curvature ratio (l / a). The transverse sharing effect is found to be noticeable in the deformation of thick shells, however, this effect diminishes with a continuous increase in l / a ratios.


Author(s):  
Shahin Mohammadrezazadeh ◽  
Ali Asghar Jafari

In this paper for the first time, active vibration control of rotating laminated composite cylindrical shells embedded with magnetostrictive layers as actuators by means of first-order shear deformation theory is studied. Vibration equations of the rotating shell are extracted using Hamilton principle considering the effects of initial hoop tension, Coriolis, and centrifugal forces. The vibration differential equations are reduced to algebraic ones through Galerkin method. The validity of the study is proved by the comparison of some results with the literature results. Eventually, the influence of several parameters on damping characteristics and vibration responses are investigated in detail.


2020 ◽  
pp. 107754632095166
Author(s):  
Chih-Chiang Hong

The effects of third-order shear deformation theory and varied shear correction coefficient on the vibration frequency of thick functionally graded material cylindrical shells with fully homogeneous equation under thermal environment are investigated. The nonlinear coefficient term of displacement field of third-order shear deformation theory is included to derive the fully homogeneous equation under free vibration of functionally graded material cylindrical shells. The determinant of the coefficient matrix in dynamic equilibrium differential equations under free vibration can be represented into the fully fifth-order polynomial equation, thus the natural frequency can be found. Two parametric effects of environment temperature and functionally graded material power law index on the natural frequency of functionally graded material thick cylindrical shells with and without the nonlinear coefficient term of displacement fields are computed and investigated.


Sign in / Sign up

Export Citation Format

Share Document