Numerical Investigation on the Failure Mechanical Behavior of Red Sandstone Containing Two Coplanar Fissures Under Conventional Triaxial Compression

Author(s):  
Sheng-Qi Yang
2015 ◽  
Vol 49 (6) ◽  
pp. 2155-2163 ◽  
Author(s):  
Davood Fereidooni ◽  
Gholam Reza Khanlari ◽  
Mojtaba Heidari ◽  
Ali Asghar Sepahigero ◽  
Amir Pirooz Kolahi-Azar

2012 ◽  
Vol 170-173 ◽  
pp. 322-326
Author(s):  
Kui Chen ◽  
Ren Hua Yang ◽  
Tao Xu ◽  
Ya Jing Qi

In order to study the relationship between the design parameters of the shield machine and the strength of rock, the behaviours of rocks under the conventional triaxial compression, the complete stress-strain curves under different confining pressures of three typical rocks, i.e. granite, limestone and red sandstone, were taken out for analysis. From the curves, the values of elastic modulus E and Poisson's ratio μ were gained and the relationships between the following parameters were figured out, which are peak strength versus confining pressure, residual strength versus confining pressure, strain at peak strength versus confining pressure, and strain at residual strength versus confining pressure. According to the values and relationships, the complete stress-strain curves were divided into three parts. For each part, a constitutive equation was established by using the strain softening trilinear elastic-brittle-plastic constitutive model, and all the related parameters in the constitutive equations were also presented, which provide a theoretical foundation for the digital design of the cutter head and cutters of Shield machine.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Yugui Yang ◽  
Feng Gao ◽  
Hongmei Cheng ◽  
Yuanming Lai ◽  
Xiangxiang Zhang

The researches on the mechanical characteristic and constitutive models of frozen soil have important meanings in structural design of deep frozen soil wall. In the present study, the triaxial compression and creep tests have been carried out, and the mechanical characteristic of frozen silt is obtained. The experiment results show that the deformation characteristic of frozen silt is related to confining pressure under conventional triaxial compression condition. The frozen silt presents strain softening in shear process; with increase of confining pressure, the strain softening characteristic gradually decreases. The creep curves of frozen silt present the decaying and the stable creep stages under low stress level; however, under high stress level, once the strain increases to a critical value, the creep strain velocity gradually increases and the specimen quickly happens to destroy. To reproduce the deformation behavior, the disturbed state elastoplastic and new creep constitutive models of frozen silt are developed. The comparisons between experimental results and calculated results from constitutive models show that the proposed constitutive models could describe the conventional triaxial compression and creep deformation behaviors of frozen silt.


Sign in / Sign up

Export Citation Format

Share Document