Cavity Design Method for Investment Casting Die of Turbine Blade

Author(s):  
Dinghua Zhang ◽  
Yunyong Cheng ◽  
Ruisong Jiang ◽  
Neng Wan
2012 ◽  
Vol 159 ◽  
pp. 18-22
Author(s):  
Rui Song Jiang ◽  
Xin Fa Chen ◽  
Da Yong Feng ◽  
Feng Jun Wang

In this study, a novel structure design method based on knowledge template was prompted. The notion and construction methods of knowledge template were introduced. Moreover, the knowledge template based design process was represented. The knowledge templates of investment casting die bases of turbine blade were established and a design system for die base was developed. The system provides designers with a semi-automated approach for the die base design. Finally, several sample applications for investment casting die base of turbine blade were presented for demonstration.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 4045
Author(s):  
David Menéndez Arán ◽  
Ángel Menéndez

A design method was developed for automated, systematic design of hydrokinetic turbine rotor blades. The method coupled a Computational Fluid Dynamics (CFD) solver to estimate the power output of a given turbine with a surrogate-based constrained optimization method. This allowed the characterization of the design space while minimizing the number of analyzed blade geometries and the associated computational effort. An initial blade geometry developed using a lifting line optimization method was selected as the base geometry to generate a turbine blade family by multiplying a series of geometric parameters with corresponding linear functions. A performance database was constructed for the turbine blade family with the CFD solver and used to build the surrogate function. The linear functions were then incorporated into a constrained nonlinear optimization algorithm to solve for the blade geometry with the highest efficiency. A constraint on the minimum pressure on the blade could be set to prevent cavitation inception.


China Foundry ◽  
2017 ◽  
Vol 14 (6) ◽  
pp. 469-477 ◽  
Author(s):  
Jia-wei Tian ◽  
Kun Bu ◽  
Jin-hui Song ◽  
Guo-liang Tian ◽  
Fei Qiu ◽  
...  

2000 ◽  
Vol 14 (1) ◽  
pp. 65-71 ◽  
Author(s):  
Choong Hyun Kim ◽  
Sung-Chul Lee ◽  
Hyo-Sok Ahn ◽  
Tae Hyong Chong

2020 ◽  
Vol 142 (10) ◽  
Author(s):  
Hamid Khakpour Nejadkhaki ◽  
John F. Hall

Abstract A control framework and integrative design method for an adaptive wind turbine blade is presented. The blade is adapted by actively transforming the twist angle distribution (TAD) along the blade. This can alleviate fatigue loads and improve wind capture. In this paper, we focus on wind capture. The proposed design concept consists of a rigid spar that is surrounded by a series of flexible blade sections. Each section has two zones of stiffness. The sections are actuated at each end to deform the TAD. A quasi-static control technique is proposed for the TAD. The controller sets the position of the blade actuators that shape the TAD during steady-state operation. A design procedure is used to define the required TAD as a function of the wind speed. This is based on an optimization procedure that minimizes the deviation between the actual TAD and that found in the aerodynamic design. The design inputs for this optimization problem include the stiffness for each zone of the section, and the actuator locations along the blade. Given the optimal TAD at each wind speed, the free position of the blade is established using a dynamic programming technique. The position is selected based on minimal actuation energy according to wind conditions at any installation site. The proposed framework is demonstrated using a National Renewable Energy Laboratory (NREL) certified wind turbine model with recorded wind data. An increase in efficiency of 3.8% with only a deviation of 0.34% from the aerodynamic TAD is observed.


2020 ◽  
Vol 26 ◽  
pp. 2190-2199
Author(s):  
Alok Singh Chauhan ◽  
Boddapati Anirudh ◽  
A. Satyanarayana ◽  
Pradyumna Rallapalli

Author(s):  
Kyung-Nam Chung ◽  
Yang-Ik Kim ◽  
Ju-Heon Sung ◽  
In-Ho Chung ◽  
Sang-Hoon Shin

In this study, an optimization design method is established for a rotor blade of a Curtis turbine. Bezier curve is generally used to define the profile of turbine blades. However, this curve is not proper to a supersonic impulse turbine. Section shape of a supersonic turbine blade is composed of straight lines and circular arcs. That is, it has several constraints to define the section shape. Thus, in this study, a blade design method is developed by using B-spline curve in which local control is possible. The turbine blade section has been changed by varying three design parameters of exit blade angle, stagger angle and maximum camber. Then flow analyses have been carried out for the sections. Lift-drag ratio of the blade section is used as the object function, and it is maximized in the optimization. Second-order response surface model is employed to express the object function as a function of design parameters. Central composite design method is used to reduce the number of design points. Then, an evolution strategy is employed to obtain the optimized section of the Curtis turbine blade.


2011 ◽  
Vol 88-89 ◽  
pp. 549-553
Author(s):  
Wen Xian Tang ◽  
Cheng Cheng ◽  
Yun Di Cai ◽  
Fei Wang

According to the design procedure of wind turbine blade, a design method that can make CAD software joint used was brought up. Wilson method was used to design and calculate the main data of blade. On this basis, the three-dimensional solid model of wind turbine blade could get by using and playing the function of different CAD software. This study provided a reference for the design of wind turbine blade and other similar complicated structures, which settles the basis for the further analysis of blade.


Sign in / Sign up

Export Citation Format

Share Document