Dynamic Interaction of Train-Bridge Systems in High-Speed Railways

Author(s):  
He Xia ◽  
Nan Zhang ◽  
Weiwei Guo
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3609
Author(s):  
Mykola Sysyn ◽  
Michal Przybylowicz ◽  
Olga Nabochenko ◽  
Lei Kou

The ballasted track superstructure is characterized by a relative quick deterioration of track geometry due to ballast settlements and the accumulation of sleeper voids. The track zones with the sleeper voids differ from the geometrical irregularities with increased dynamic loading, high vibration, and unfavorable ballast-bed and sleeper contact conditions. This causes the accelerated growth of the inhomogeneous settlements, resulting in maintenance-expensive local instabilities that influence transportation reliability and availability. The recent identification and evaluation of the sleeper support conditions using track-side and on-board monitoring methods can help planning prevention activities to avoid or delay the development of local instabilities such as ballast breakdown, white spots, subgrade defects, etc. The paper presents theoretical and experimental studies that are directed at the development of the methods for sleeper support identification. The distinctive features of the dynamic behavior in the void zone compared to the equivalent geometrical irregularity are identified by numeric simulation using a three-beam dynamic model, taking into account superstructure and rolling stock dynamic interaction. The spectral features in time domain in scalograms and scattergrams are analyzed. Additionally, the theoretical research enabled to determine the similarities and differences of the dynamic interaction from the viewpoint of track-side and on-board measurements. The method of experimental investigation is presented by multipoint track-side measurements of rail-dynamic displacements using high-speed video records and digital imaging correlation (DIC) methods. The method is used to collect the statistical information from different-extent voided zones and the corresponding reference zones without voids. The applied machine learning methods enable the exact recent void identification using the wavelet scattering feature extraction from track-side measurements. A case study of the method application for an on-board measurement shows the moderate results of the recent void identification as well as the potential ways of its improvement.


2017 ◽  
Vol 199 ◽  
pp. 2729-2734 ◽  
Author(s):  
M. Tanabe ◽  
K. Goto ◽  
T. Watanabe ◽  
M. Sogabe ◽  
H. Wakui ◽  
...  

2020 ◽  
Vol 157 ◽  
pp. 06015
Author(s):  
Leonid Diachenko ◽  
Vladimir Smirnov

This work contains the results of a research of the dynamic processes in the “bridge-train” system while passenger trains move over a bridge structure (overpass) in high-speed. The article presents the methodology of mathematic modelling, and the basic differential equations of the studied system elements motion are provided. Also there is a description of dynamic interaction of the bridge-train system numerical model based on the FEM. In general, taking into account in the design scheme of the “bridge” system not only spans, but also piers with a foundation, it is possible to more accurately determine the values of the bridge natural frequencies, which is a key factor in assessing the dynamic response of a structure when passing a high-speed train.


Author(s):  
M. Tanabe ◽  
N. Matsumoto ◽  
H. Wakui ◽  
M. Sogabe ◽  
H. Okuda ◽  
...  

In this paper, a simple and efficient numerical method to solve for the dynamic interaction of a Shinkansen train (high-speed train in Japan) and railway structure during an earthquake is given. The motion of the train is modeled in multibody dynamics with nonlinear springs and dampers used to connect components. An efficient mechanical model for contact dynamics between wheel and rail during an earthquake is presented. The railway structure is modeled with various finite elements. A three-dimensional nonlinear spring element based on a trilinear elastic-plastic material model is given for the concrete railway structure during an earthquake. A loop structure model has been devised to obtain an approximated combined motion of the train and railway structure during an earthquake. A modal method has been developed to solve large-scale nonlinear equations of motion of the train and railway structure effectively. Based on the present method, a computer program DIASTARS for the dynamic interaction of a Shinkansen train and railway structure during an earthquake has been developed. Numerical examples are demonstrated.


2011 ◽  
Vol 255-260 ◽  
pp. 3988-3992 ◽  
Author(s):  
Rong Chen ◽  
Wang Ping ◽  
Yang Song

Train/turnout dynamic interaction is exacerbated by high speed of passenger train and heavy load of freight train, and wheel/rail relation is one of the key factors that determine the running characteristics of the train. Focusing on three types of wheel treads with different profiles (TB tapered tread, LM worn tread, LMA worn tread), longitudinal distribution of the contact geometric parameters along the switch rail and nose rail of 350km/h No.18 turnout are calculated, such as tread equivalent conicity, coefficient of contact angle difference, roll angle factor, gravitational stiffness of wheelset, gravitational angle stiffness of wheelset, etc. Results show that: (1) LMA worn tread produces the smallest irregularity; (2) wheel/rail vertical impact at the frog will become bigger; (3) Top profile of switch rail and nose rail should be designed according to the wheel tread type so as to mitigate the wheel/rail dynamic interaction and increase the safety and stability of a train.


Author(s):  
L. Leon ◽  
D. C. Rizos

In continuation of the authors’ previous published work, this paper presents improved models of relatively long railway tracks and discusses the new studies on their development and implementation. The proposed models address the through-the-soil interaction of ties in a long track segment and capture the traveling wave effects on ties located long distances from a loaded tie. These models are very computationally efficient, since they are expressed in a closed solution form. They are also very accurate and capture all the dynamic characteristics of the physical problem (e.g. frequency content), since they represent scaled characteristics responses of a reference response that is computed through rigorous analytical procedures. It is noted that the proposed models are developed for all vibration modes of ties due to wave propagation in linear, isotropic and homogeneous media. The models are verified through comparisons with other BEM solutions, and the accuracy and efficiency are established. Implementation of the proposed modes is demonstrated through a study on the critical train velocity and the effects on the system’s vibration response are quantified and discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Chao Chang ◽  
Liang Ling ◽  
Zhaoling Han ◽  
Kaiyun Wang ◽  
Wanming Zhai

Wheel hollow wear is a common form of wheel-surface damage in high-speed trains, which is of great concern and a potential threat to the service performance and safety of the high-speed railway system. At the same time, rail corridors in high-speed railways are extensively straightened through the addition of bridges. However, only few studies paid attention to the influence of wheel-profile wear on the train-track-bridge dynamic interaction. This paper reports a study of the high-speed train-track-bridge dynamic interactions under new and hollow worn wheel profiles. A nonlinear rigid-flexible coupled model of a Chinese high-speed train travelling on nonballasted tracks supported by a long-span continuous girder bridge is formulated. This modelling is based on the train-track-bridge interaction theory, the wheel-rail nonelliptical multipoint contact theory, and the modified Craig–Bampton modal synthesis method. The effects of wheel-rail nonlinearity caused by the wheel hollow wear are fully considered. The proposed model is applied to predict the vertical and lateral dynamic responses of the high-speed train-track-bridge system under new and worn wheel profiles, in which a high-speed train passing through a long-span continuous girder bridge at a speed of 350 km/h is considered. The numerical results show that the wheel hollow wear changes the geometric parameters of the wheel-rail contact and then deteriorates the train-track-bridge interactions. The worn wheels can increase the vibration response of the high-speed railway bridges.


2013 ◽  
Vol 574 ◽  
pp. 135-150
Author(s):  
Jia Feng Liu ◽  
Yan Li

With the development of long-span flexible bridges and the increase of highway transportation, both the dynamic responses of highway bridges under high-speed and heavy vehicles and the safety control of vehicles have deserved general concerns. First, this paper briefly discussed some researches on coupling vibration of vehicle and highway-bridges, then roundly summarized main research achievements accounting on the vehicle analytical model, bridge analytical model, surface roughness of road, numerical method of vehicle-bridge coupling vibration and some other aspects. Meanwhile, some research trends and challenge on vehicle and bridge dynamic interaction in engineering application were pointed out.


Sign in / Sign up

Export Citation Format

Share Document