Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


1992 ◽  
Vol 59 (2S) ◽  
pp. S217-S223 ◽  
Author(s):  
V. Berdichevsky ◽  
V. Misyura

It is shown that classical shell theory does not yield correct values of displacements in some shell problems. Underlying causes of this effect are discussed.


Author(s):  
John Huang ◽  
Kannan Subramanian ◽  
Patrick Boster ◽  
Julian J. Bedoya

Abstract In this paper, an analytical method to estimate the deformation strains that can quantify the severity of bulges, as it applies to coke drums, is presented. The proposed method is based on classical shell theory and API 579-1/ASME FFS-1 (2016) procedures involving triaxiality limits. In this first part of the work, only the theoretical development is presented along with the comparison of the results from this theoretical approach with two case studies that emulate the bulging due to different loading scenarios. The developed approach is then applied to a deformed coke drum. In the next part of this paper, the application of this approach on selected in-service coke drums that are equipped with strain gages will be presented. The authors would like to emphasize the well-known fact that the coke drum is a complex pressure vessel for which any single simplified assessment technique may not be sufficient to quantify the life or fitness-for-service (FFS) of a coke drum due to the complexities associated with the various parameters that affect the mechanical integrity of the coke drum. This paper is an attempt to advance the assessment techniques that are currently utilized in the industry.


2020 ◽  
Vol 25 (6) ◽  
pp. 1318-1339 ◽  
Author(s):  
Mircea Bîrsan

Starting from the three-dimensional Cosserat elasticity, we derive a two-dimensional model for isotropic elastic shells. For the dimensional reduction, we employ a derivation method similar to that used in classical shell theory, as presented systematically by Steigmann (Koiter’s shell theory from the perspective of three-dimensional nonlinear elasticity. J Elast 2013; 111: 91–107). As a result, we obtain a geometrically nonlinear Cosserat shell model with a specific form of the strain energy density, which has a simple expression, with coefficients depending on the initial curvature tensor and on three-dimensional material constants. The explicit forms of the stress–strain relations and the local equilibrium equations are also recorded. Finally, we compare our results with other six-parameter shell models and discuss the relation to the classical Koiter shell model.


1989 ◽  
Vol 42 (11S) ◽  
pp. S13-S19
Author(s):  
Wolf Altman ◽  
Luiz Bevilacqua

An analysis of follower forces acting on shell structures is presented. Attention is focussed on the expressions of such forces as functions of the generalized displacements. Specific expressions for the follower forces are obtained, according to the order of magnitude of the strains and angles of rotation. For small strains the follower forces allow a decomposition into conservative and non-conservative components. This leads to the equations of dynamic stability of shell problems subjected to follower loads. The dynamic counterparts of Donnell-Mushtari-Vlasov stability equations are presented, by either retaining or omitting the prebuckling rotations.


1972 ◽  
Vol 39 (2) ◽  
pp. 495-500 ◽  
Author(s):  
D. H. Seitz

A numerical method for stress analysis of three-layered, honeycomb-type sandwich plates and shells of arbitrary thickness is illustrated by application to a thick conical frustum. Results are demonstrated in a numerical example. The method features an exact elasticity analysis of the core including transverse shear and transverse normal stress. The facings are treated by classical shell theory. The numerical method used is forward integration.


1969 ◽  
Vol 20 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Boen-Dar Liaw

SummaryThe governing equations for bending of truncated conical shells with multi-layer anisotropic construction are developed by a variational method. The shell is considered to consist of an arbitrary number of alternating soft and hard layers. It is assumed further that the n hard membrane layers are isotropic and may possess different elastic properties, while the (n-1) soft core layers are orthotropic in general and may take transverse shear only. The variations of stresses across the membranes are neglected, as are the surface-parallel stresses in the cores. These assumptions are consistent with those usually employed in single-core sandwich shells. The energy functional is formulated with the stresses considered as independent variables. The stresses are also dependent variables defined in the set of two curvilinear co-ordinates defining the surface of the shell. The stress resultants are introduced as constraint conditions utilising Lagrange multipliers. Successful definition of an elastic neutral surface ensures the uniqueness of shell constants and the equations obtained may be in a form comparable to that of classical shell theory. The system of equations is reduced to a form where Galerkin’s method can be applied directly.


Sign in / Sign up

Export Citation Format

Share Document