Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Author(s):  
Nikola K. Kasabov
Author(s):  
Daniel Auge ◽  
Julian Hille ◽  
Etienne Mueller ◽  
Alois Knoll

AbstractBiologically inspired spiking neural networks are increasingly popular in the field of artificial intelligence due to their ability to solve complex problems while being power efficient. They do so by leveraging the timing of discrete spikes as main information carrier. Though, industrial applications are still lacking, partially because the question of how to encode incoming data into discrete spike events cannot be uniformly answered. In this paper, we summarise the signal encoding schemes presented in the literature and propose a uniform nomenclature to prevent the vague usage of ambiguous definitions. Therefore we survey both, the theoretical foundations as well as applications of the encoding schemes. This work provides a foundation in spiking signal encoding and gives an overview over different application-oriented implementations which utilise the schemes.


Webology ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 01-18
Author(s):  
Hayder Rahm Dakheel AL-Fayyadh ◽  
Salam Abdulabbas Ganim Ali ◽  
Dr. Basim Abood

The goal of this paper is to use artificial intelligence to build and evaluate an adaptive learning system where we adopt the basic approaches of spiking neural networks as well as artificial neural networks. Spiking neural networks receive increasing attention due to their advantages over traditional artificial neural networks. They have proven to be energy efficient, biological plausible, and up to 105 times faster if they are simulated on analogue traditional learning systems. Artificial neural network libraries use computational graphs as a pervasive representation, however, spiking models remain heterogeneous and difficult to train. Using the artificial intelligence deductive method, the paper posits two hypotheses that examines whether 1) there exists a common representation for both neural networks paradigms for tutorial mentoring, and whether 2) spiking and non-spiking models can learn a simple recognition task for learning activities for adaptive learning. The first hypothesis is confirmed by specifying and implementing a domain-specific language that generates semantically similar spiking and non-spiking neural networks for tutorial mentoring. Through three classification experiments, the second hypothesis is shown to hold for non-spiking models, but cannot be proven for the spiking models. The paper contributes three findings: 1) a domain-specific language for modelling neural network topologies in adaptive tutorial mentoring for students, 2) a preliminary model for generalizable learning through back-propagation in spiking neural networks for learning activities for students also represented in results section, and 3) a method for transferring optimised non-spiking parameters to spiking neural networks has also been developed for adaptive learning system. The latter contribution is promising because the vast machine learning literature can spill-over to the emerging field of spiking neural networks and adaptive learning computing. Future work includes improving the back-propagation model, exploring time-dependent models for learning, and adding support for adaptive learning systems.


2020 ◽  
Vol 96 (3s) ◽  
pp. 580-584
Author(s):  
О.А. Тельминов ◽  
Е.С. Горнев ◽  
Г.С. Теплов

Рассмотрен ландшафт искусственного интеллекта (ИИ) в области реализации перспективных нейронных сетей третьего поколения - спайковых нейронных сетей. Выявлены закономерности в принципах построения современной элементной базы и дана оценка возможности развития перспективной элементной базы. Предложен вариант встраивания деятельности компании в существующую экосистему ИИ. The paper considers the emerging landscape of artificial intelligence in the field of the third generation spiking neural networks. Some patterns principles of modern hardware components have been discovered, as well as possibilities of advanced components development. The Company’s ways of incorporation into state-of-the-art artificial intelligence ecosystem has been proposed.


Author(s):  
A.B. Movsisyan ◽  
◽  
A.V. Kuroyedov ◽  
G.A. Ostapenko ◽  
S.V. Podvigin ◽  
...  

Актуальность. Определяется увеличением заболеваемости глаукомой во всем мире как одной из основных причин снижения зрения и поздней постановкой диагноза при имеющихся выраженных изменений со стороны органа зрения. Цель. Повысить эффективность диагностики глаукомы на основании оценки диска зрительного нерва и перипапиллярной сетчатки нейросетью и искусственным интеллектом. Материал и методы. Для обучения нейронной сети были выделены четыре диагноза: первый – «норма», второй – начальная глаукома, третий – развитая стадия глаукомы, четвертый – глаукома далеко зашедшей стадии. Классификация производилась на основе снимков глазного дна: область диска зрительного нерва и перипапиллярной сетчатки. В результате классификации входные данные разбивались на два класса «норма» и «глаукома». Для целей обучения и оценки качества обучения, множество данных было разбито на два подмножества: тренировочное и тестовое. В тренировочное подмножество были включены 8193 снимка с глаукомными изменениями диска зрительного нерва и «норма» (пациенты без глаукомы). Стадии заболевания были верифицированы согласно действующей классификации первичной открытоугольной глаукомы 3 (тремя) экспертами со стажем работы от 5 до 25 лет. В тестовое подмножество были включены 407 снимков, из них 199 – «норма», 208 – с начальной, развитой и далекозашедшей стадиями глаукомы. Для решения задачи классификации на «норма»/«глаукома» была выбрана архитектура нейронной сети, состоящая из пяти сверточных слоев. Результаты. Чувствительность тестирования дисков зрительных нервов с помощью нейронной сети составила 0,91, специфичность – 0,93. Анализ полученных результатов работы показал эффективность разработанной нейронной сети и ее преимущество перед имеющимися методами диагностики глаукомы. Выводы. Использование нейросетей и искусственного интеллекта является современным, эффективным и перспективным методом диагностики глаукомы.


2012 ◽  
Vol 35 (12) ◽  
pp. 2633 ◽  
Author(s):  
Xiang-Hong LIN ◽  
Tian-Wen ZHANG ◽  
Gui-Cang ZHANG

2020 ◽  
Vol 121 ◽  
pp. 88-100 ◽  
Author(s):  
Jesus L. Lobo ◽  
Javier Del Ser ◽  
Albert Bifet ◽  
Nikola Kasabov

Sign in / Sign up

Export Citation Format

Share Document