Spring Loaded Rotor Shafts as New Flexible Shaft Hub Joint for E-Rotors

Author(s):  
Benjamin Dönges ◽  
Maximilian Rolfes ◽  
Stefan Buchkremer
Keyword(s):  
2012 ◽  
Vol 28 (3) ◽  
pp. 513-522 ◽  
Author(s):  
H. M. Khanlo ◽  
M. Ghayour ◽  
S. Ziaei-Rad

AbstractThis study investigates the effects of disk position nonlinearities on the nonlinear dynamic behavior of a rotating flexible shaft-disk system. Displacement of the disk on the shaft causes certain nonlinear terms which appears in the equations of motion, which can in turn affect the dynamic behavior of the system. The system is modeled as a continuous shaft with a rigid disk in different locations. Also, the disk gyroscopic moment is considered. The partial differential equations of motion are extracted under the Rayleigh beam theory. The assumed modes method is used to discretize partial differential equations and the resulting equations are solved via numerical methods. The analytical methods used in this work are inclusive of time series, phase plane portrait, power spectrum, Poincaré map, bifurcation diagrams, and Lyapunov exponents. The effect of disk nonlinearities is studied for some disk positions. The results confirm that when the disk is located at mid-span of the shaft, only the regular motion (period one) is observed. However, periodic, sub-harmonic, quasi-periodic, and chaotic states can be observed for situations in which the disk is located at places other than the middle of the shaft. The results show nonlinear effects are negligible in some cases.


1983 ◽  
Vol 105 (3) ◽  
pp. 480-486 ◽  
Author(s):  
M. Sakata ◽  
T. Aiba ◽  
H. Ohnabe

In the field of rotor dynamics, increased attention is being given to the transient response analysis of the rotor, since the effects of impact loading and vibrations of the rotor arising from blade loss can be studied by a time transient solution of the rotor system. As recent trends in rotating machinery have been directed towards lightweight, high-speed flexible rotors, the effect of flexibility on transient response analysis is becoming of increasing importance. In the present paper, a transient vibration analysis is carried out on a flexible-disk/flexible-shaft system or rigid-disk flexible-shaft system subjected to a sudden imbalance that is assumed to represent the effect of blade loss. To solve the basic equation governing a rotating flexible disk the Galerkin’s method is used, and the equation of motion of the rotor system is numerically solved by employing the Runge-Kutta-Gill’s method. Experiments were conducted on a model rotor having a blade loss simulator; the shaft vibrations were also measured. The validity of the anaytical results was demonstrated by comparison with the experimental results.


2019 ◽  
Vol 27 (4) ◽  
pp. 781-793
Author(s):  
Yangyang Liang ◽  
Zhengming Gao ◽  
Dai'en Shi ◽  
Haotian Li ◽  
Yuyun Bao ◽  
...  

2016 ◽  
Vol 138 (3) ◽  
Author(s):  
DaeYi Jung ◽  
H. A. DeSmidt

In recent years, there has been much interest in the use of automatic balancing devices (ABD) in rotating machinery. Autobalancers consist of several freely moving eccentric balancing masses mounted on the rotor, which, at certain operating speeds, act to cancel rotor imbalance. This “automatic balancing” phenomenon occurs as a result of nonlinear dynamic interactions between the balancer and rotor wherein the balancer masses naturally synchronize with the rotor with appropriate phase to cancel the imbalance. However, due to inherent nonlinearity of the autobalancer, the potential for other undesirable nonsynchronous limit-cycle behavior exists. In such situations, the balancer masses do not reach their desired synchronous balanced positions resulting in increased rotor vibration. To explore this nonsynchronous behavior of ABD, the unstable limit-cycle analysis of three-dimensional (3D) flexible shaft/rigid rotor/ABD/rigid supports described by the modal coordinates has been investigated here. Essentially, this paper presents an approximate harmonic analytical solution to describe the limit-cycle behavior of ABD–rotor system interacting with flexible shaft, which has not been fully considered by ABD researchers. The modal shape of flexible shaft is determined by using well-known fixed–fixed boundary condition due to symmetric rigid supports. Here, the whirl speed of the ABD balancer masses is determined via the solution of a nonlinear characteristic equation. Also, based upon the analytical limit-cycle solutions, the limit-cycle stability of three primary design parameters for ABD is assessed via a perturbation and Floquet analysis: the size of ABD balancer mass, the ABD viscous damping, and the relative axial location of ABD to the imbalance rotor along the shaft. The coexistence of the stable balanced synchronous condition and undesirable nonsynchronous limit-cycle is also studied. It is found that for certain combinations of ABD parameters and rotor speeds, the nonsynchronous limit-cycle can be made unstable, thus guaranteeing asymptotic stability of the synchronous balanced condition at the supercritical shaft speeds between each flexible mode. Finally, the analysis is validated through numerical simulation. The findings in this paper yield important insights for researchers wishing to utilize ABD in flexible shaft/rigid rotor systems and limit-cycle mitigation.


2010 ◽  
Vol 2010 (0) ◽  
pp. _2A1-B22_1-_2A1-B22_4
Author(s):  
Yuta SEKIGUCHI ◽  
Yo KOBAYASHI ◽  
Yu TOMONO ◽  
Hiroki WATANABE ◽  
Kazutaka TOYODA ◽  
...  

Author(s):  
Brandon Sargent ◽  
Maxwell Bean ◽  
David Wood ◽  
Brian Jensen ◽  
Spencer Magleby ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document