A New Approach to Space Communications During Re-entry Based on the Propagation Characteristics of Electromagnetic Waves in Ionized Media

Author(s):  
H. Hodara ◽  
H. R. Raemer ◽  
G. I. Cohn
1998 ◽  
Vol 63 (8) ◽  
pp. 1187-1201 ◽  
Author(s):  
Jaroslav Zamastil ◽  
Lubomír Skála ◽  
Petr Pančoška ◽  
Oldřich Bílek

Using the semiclassical approach for the description of the propagation of the electromagnetic waves in optically active isotropic media we derive a new formula for the circular dichroism parameter. The theory is based on the idea of the time damped electromagnetic wave interacting with the molecules of the sample. In this theory, the Lambert-Beer law need not be taken as an empirical law, however, it follows naturally from the requirement that the electromagnetic wave obeys the Maxwell equations.


1999 ◽  
Vol 62 (1) ◽  
pp. 87-94 ◽  
Author(s):  
J. GONG

A dispersion equation is derived for a cylindrical waveguide of circular cross-section partially filled with chiroplasma. The propagation characteristics of electromagnetic waves in the family of waveguide modes are studied. The dispersion curves are given. It is found that the propagation constant changes almost linearly with the chirality admittance for the parameters that we choose, and increases with increasing filled area.


2011 ◽  
Vol 301-303 ◽  
pp. 1417-1421
Author(s):  
Shan Hua Yao ◽  
Xian Liang Wu

In this paper ,the mine tunnels is regard as wave-guide which contains kinds of un-beneficial medium, we have study the formulas of electromagnetic waves propagation attenuation and roughness attenuation, the relations between propagation attenuation and roughness and frequency were simulated. The results show that the influence of propagation attenuation in lower frequency is more obvious, and roughness attenuation is increased rapidly as roughness of coal mine tunnels increasing. But tilted attenuation is stronger than roughness attenuation as propagation frequency increasing.


Sign in / Sign up

Export Citation Format

Share Document