Generalized Differential Evolution for General Non-Linear Optimization

COMPSTAT 2008 ◽  
2008 ◽  
pp. 459-471 ◽  
Author(s):  
Saku Kukkonen ◽  
Jouni Lampinen

The environmental degradation and increased power demand has forced modern power systems to operate at the closest stability boundaries. Thereby, the power systems operations mainly focus for the inclusion of transient stability constraints in an optimal power flow (OPF) problem. Algebraic and differential equations are including in non-linear optimization problems formed by the transient stability constrained based OPF problem (TSCOPF). Notably, for a small to large power systems solving these non-linear optimization problems is a complex task. In order to achieve the increased power carrying capacity by a power line, the Flexible AC transmission systems (FACTS) devices provides the best supported means a lot. As a result, even under a network contingency condition, the security of the power system is also highly improved with FACTS devices. The FACTS technology has the potential in controlling the routing of the line power flows and the capability of interconnecting networks making the possibility of trading energy between distant agents. This paper presents a new evolutionary algorithm for solving TSCOPF problems with a FACTS device namely adaptive unified differential evolution (AuDE). The large non-convex and nonlinear problems are solved for achieving global optimal solutions using a new evolutionary algorithm called AuDE. Numerical tests on the IEEE 30-bus 6-generator, and IEEE New England 10-generator, 39-bus system have shown the robustness and effectiveness of the proposed AuDE approach for solving TSCOPF in the presence of a FACTS device such as the SSSC device. Due to the page limitation only 30-bus results are presented.


Author(s):  
Azam Asilian Bidgoli ◽  
Sedigheh Mahdavi ◽  
Shahryar Rahnamayan ◽  
Hessein Ebrahimpour-Komleh

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 653 ◽  
Author(s):  
Saeed Dobbah ◽  
Muhammad Aslam ◽  
Khushnoor Khan

In this paper, we propose a new synthetic sampling plan assuming that the quality characteristic follows the normal distribution with known and unknown standard deviation. The proposed plan is given and the operating characteristic (OC) function is derived to measure the performance of the proposed sampling plan for some fixed parameters. The parameters of the proposed sampling plan are determined using non-linear optimization solution. A real example is added to explain the use of the proposed plan by industry.


2017 ◽  
Vol 1 (2) ◽  
pp. 82 ◽  
Author(s):  
Tirana Noor Fatyanosa ◽  
Andreas Nugroho Sihananto ◽  
Gusti Ahmad Fanshuri Alfarisy ◽  
M Shochibul Burhan ◽  
Wayan Firdaus Mahmudy

The optimization problems on real-world usually have non-linear characteristics. Solving non-linear problems is time-consuming, thus heuristic approaches usually are being used to speed up the solution’s searching. Among of the heuristic-based algorithms, Genetic Algorithm (GA) and Simulated Annealing (SA) are two among most popular. The GA is powerful to get a nearly optimal solution on the broad searching area while SA is useful to looking for a solution in the narrow searching area. This study is comparing performance between GA, SA, and three types of Hybrid GA-SA to solve some non-linear optimization cases. The study shows that Hybrid GA-SA can enhance GA and SA to provide a better result


Sign in / Sign up

Export Citation Format

Share Document