From Trusted Cloud Infrastructures to Trustworthy Cloud Services

Author(s):  
Michael Gröne ◽  
Norbert Schirmer
2019 ◽  
Vol 26 (1) ◽  
pp. 78
Author(s):  
Rajeev Ranjan Yadav ◽  
Gleidson A. S. Campos ◽  
Erica Teixeira Gomes Sousa ◽  
Fernando Aires Lins

On-demand services and reduced costs made cloud computing a popular mechanism to provide scalable resources according to the user’s expectations. This paradigm is an important role in business and academic organizations, supporting applications and services deployed based on virtual machines and containers, two different technologies for virtualization. Cloud environments can support workloads generated by several numbers of users, that request the cloud environment to execute transactions and its performance should be evaluated and estimated in order to achieve clients satisfactions when cloud services are offered. This work proposes a performance evaluation strategy composed of a performance model and a methodology for evaluating the performance of services configured in virtual machines and containers in cloud infrastructures. The performance model for the evaluation of virtual machines and containers in cloud infrastructures is based on stochastic Petri nets. A case study in a real public cloud is presented to illustrate the feasibility of the performance evaluation strategy. The case study experiments were performed with virtual machines and containers supporting workloads related to social networks transactions.


Author(s):  
Shamsutdin Kadievich Sheikhgasanov ◽  
Yury Vasil'evich Kolotilov

The article considers the problem of cloud computing - the environment of data storage and processing that provides access to resources shared among multiple users. Cloud computing is a model for organizing remote access on request for a shared set of configurable computing resources that can be quickly allocated and freed with minimal management or interaction costs with the service provider. Using clouds significantly reduces the costs of large industrial companies and enterprises. Cloud technology helps scale your business quickly and with minimal cost, they can improve productivity together with simplifying many business processes. Cloud computing is vastly expanding opportunities, so that all large companies today are actively switching to cloud services. But this causes significant problems with energy consumption. The energy consumption by cloud computing remains a serious problem, as data processing centers grow in size. There has been proposed the approach to choosing an energy-efficient cloud architecture that aims to reduce the energy consumption of cloud applications in all deployment models, the architectures of cloud infrastructures being given. The architecture supports energy efficiency in building, deploying and operating services.


Author(s):  
Aparna Vijaya ◽  
Neelanarayanan V

<p class="Abstract">Cloud Computing is an evolving technology as it offers significant benefits like pay only for what you use, scale the resources according to the needs and less in-house staff and resources. These benefits have resulted in tremendous increase in the number of applications and services hosted in the cloud which inturn has resulted in increase in the number of cloud providers in the market. Cloud service providers have a lot of heterogeneity in the resources they use. They have their own servers, different cloud infrastructures, API’s and methods to access the cloud resources. Despite its benefits; lack of standards among service providers has caused a high level of vendor lock-in when a software developer tries to change its cloud provider. In this paper we give an overview on the ongoing and current trends in the area of cloud service portability and we also propose a new cloud portability platform. Our new platform is based on establishing feature models which offers the desired cloud portability. Our solution DSkyL uses feature models and domain model analysis to support development, customization and deployment of application components across multiple clouds. The main goal of our approach is to reduce the effort and time needed for porting applications across different clouds. This paper aims to give an overview on DSkyL.</p>


Author(s):  
Praveen Shivashankrappa Challagidad ◽  
Mahantesh N. Birje

Data loss occurs due to crashing, correlated failure, logical failure, power outages and security threats. Several techniques (e.g. NoBackup, WARBackup and LocalRecovery) are being used to recover data locally. And, strongly consistent Cloud services (SCCS) must provide good performance and high availability. However, conventional strong consistency replication methods have the limitation of availability of replicated services when recovering huge amount of data across wide area links. There is a need for remote recovery mechanisms for high availability of service/data, because distributed nature of cloud infrastructures. To address these issues, the article proposes a hierarchical system architecture for replication across a data center, and employs the backward atomic backup recovery technique (BABRT) for local recovery and remote recovery for high availability of the cloud services/data. A mathematical model for BABRT is described. Simulation results show that BABRT reduces the storage consumption, recovery time, window of vulnerability and failure rates, compared to other recovery models.


Author(s):  
Aparna Vijaya ◽  
Neelanarayanan V

<p class="Abstract">Cloud Computing is an evolving technology as it offers significant benefits like pay only for what you use, scale the resources according to the needs and less in-house staff and resources. These benefits have resulted in tremendous increase in the number of applications and services hosted in the cloud which inturn has resulted in increase in the number of cloud providers in the market. Cloud service providers have a lot of heterogeneity in the resources they use. They have their own servers, different cloud infrastructures, API’s and methods to access the cloud resources. Despite its benefits; lack of standards among service providers has caused a high level of vendor lock-in when a software developer tries to change its cloud provider. In this paper we give an overview on the ongoing and current trends in the area of cloud service portability and we also propose a new cloud portability platform. Our new platform is based on establishing feature models which offers the desired cloud portability. Our solution DSkyL uses feature models and domain model analysis to support development, customization and deployment of application components across multiple clouds. The main goal of our approach is to reduce the effort and time needed for porting applications across different clouds. This paper aims to give an overview on DSkyL.</p>


Author(s):  
B. Aparna ◽  
S. Madhavi ◽  
G. Mounika ◽  
P. Avinash ◽  
S. Chakravarthi

We propose a new design for large-scale multimedia content protection systems. Our design leverages cloud infrastructures to provide cost efficiency, rapid deployment, scalability, and elasticity to accommodate varying workloads. The proposed system can be used to protect different multimedia content types, including videos, images, audio clips, songs, and music clips. The system can be deployed on private and/or public clouds. Our system has two novel components: (i) method to create signatures of videos, and (ii) distributed matching engine for multimedia objects. The signature method creates robust and representative signatures of videos that capture the depth signals in these videos and it is computationally efficient to compute and compare as well as it requires small storage. The distributed matching engine achieves high scalability and it is designed to support different multimedia objects. We implemented the proposed system and deployed it on two clouds: Amazon cloud and our private cloud. Our experiments with more than 11,000 videos and 1 million images show the high accuracy and scalability of the proposed system. In addition, we compared our system to the protection system used by YouTube and our results show that the YouTube protection system fails to detect most copies of videos, while our system detects more than 98% of them.


2015 ◽  
Vol 6 (9) ◽  
pp. 1606-1612
Author(s):  
Zaydoon Mohammad Hatamleh ◽  
Eslam Najim Badran ◽  
Bilal Mohammad Hatamleh

2018 ◽  
Vol 11 (2) ◽  
pp. 94-102 ◽  
Author(s):  
A. G. Filimonov ◽  
N. D. Chichirova ◽  
A. A. Chichirov ◽  
A. A. Filimonovа

Energy generation, along with other sectors of Russia’s economy, is on the cusp of the era of digital transformation. Modern IT solutions ensure the transition of industrial enterprises from automation and computerization, which used to be the targets of the second half of the last century, to digital enterprise concept 4.0. The international record of technological and structural solutions in digitization may be used in Russia’s energy sector to the full extent. Specifics of implementation of such systems in different countries are only determined by the level of economic development of each particular state and the attitude of public authorities as related to the necessity of creating conditions for implementation of the same. It is shown that a strong legislative framework is created in Russia for transition to the digital economy, with research and applied developments available that are up to the international level. The following digital economy elements may be used today at enterprises for production of electrical and thermal energy: — dealing with large amounts of data (including operations exercised via cloud services and distributed data bases); — development of small scale distributed generation and its dispatching; — implementation of smart elements in both electric power and heat supply networks; — development of production process automation systems, remote monitoring and predictive analytics; 3D-modeling of parts and elements; real time mathematic simulation with feedback in the form of control actions; — creating centres for analytical processing of statistic data and accounting in financial and economic activities with business analytics functions, with expansion of communication networks and computing capacities. Examples are presented for implementation of smart systems in energy production and distribution. It is stated in the paper that state-of art information technologies are currently being implemented in Russia, new unique digital transformation projects are being launched in major energy companies. Yet, what is required is large-scale and thorough digitization and controllable energy production system as a multi-factor business process will provide the optimum combination of efficient economic activities, reliability and safety of power supply.


Sign in / Sign up

Export Citation Format

Share Document