scholarly journals Acrosome Reaction-Mediated Motility Initiation That Is Critical for the Internal Fertilization of Urodele Amphibians

Author(s):  
Eriko Takayama-Watanabe ◽  
Tomoe Takahashi ◽  
Misato Yokoe ◽  
Akihiko Watanabe
Impact ◽  
2020 ◽  
Vol 2020 (6) ◽  
pp. 73-75
Author(s):  
Akihiko Watanabe

One of the unifying traits of life on this planet is reproduction, or life's ability to make copies of itself. The mode of reproduction has evolved over time, having almost certainly begun with simple asexual reproduction when the ancestral single celled organism divided into two. Since these beginnings' life has tried out numerous strategies, and perhaps one of the most important and successful has been sexual reproduction. This form of reproduction relies on the union of gametes, otherwise known as sperm and egg. Evolutionarily, sexual reproduction allows for greater adaptive potential because the genes of two unique individuals have a chance to recombine and mix in order to produce a new individual. Unlike asexual reproduction which produces genetically-identical clones of the parent individual, sex produces offspring with novel genes and combinations of genes. Therefore, in the face of new selective pressures there is a higher chance that one of these novel genetic profiles will produce an adaptation that is advantageous in the new circumstances. Dr Akihiko Watanabe is a reproductive biologist based in the Department of Biology, Faculty of Science Yamagata University in Japan, he is currently working on three research projects; a comparative study on the signalling pathways for inducing sperm motility and acrosome reaction in amphibians, the mechanism behind the adaptive modification of sperm morphology and motility, and the origin of sperm motility initiating substance (SMIS).


2011 ◽  
Vol 226 (6) ◽  
pp. 1620-1631 ◽  
Author(s):  
Pablo Martínez-López ◽  
Claudia L. Treviño ◽  
José Luis de la Vega-Beltrán ◽  
Gerardo De Blas ◽  
Esteban Monroy ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rasoul Kowsar ◽  
Shahrzad Ronasi ◽  
Nima Sadeghi ◽  
Khaled Sadeghi ◽  
Akio Miyamoto

AbstractUpon insemination, sperm cells are exposed to components of the female reproductive tract (FRT) fluids, such as urea and epidermal growth factor (EGF). It has been shown that both urea and EGF use EGF receptor signaling and produce reactive oxygen species (ROS) that are required at certain levels for sperm capacitation and acrosome reaction. We therefore hypothesized that during bovine sperm capacitation, a high level of urea and EGF could interfere with sperm function through overproduction of ROS. High-level urea (40 mg/dl urea is equal to 18.8 mg/dl of blood urea nitrogen) significantly increased ROS production and TUNEL-positive sperm (sperm DNA fragmentation, sDF) percentage, but decreased HOS test score, progressive motility, acrosome reaction and capacitation. The EGF reversed the negative effects of urea on all sperm parameters, with the exception of ROS production and DNA fragmentation, which were higher in urea-EGF-incubated sperm than in control-sperm. The developmental competence of oocytes inseminated with urea-EGF-incubated sperm was significantly reduced compared to the control. A close association of ROS production or sDF with 0-pronuclear and sperm non-capacitation rates was found in the network analysis. In conclusion, EGF enhanced urea-reduced sperm motility; however, it failed to reduce urea-increased sperm ROS or sDF levels and to enhance subsequent oocyte competence. The data suggests that any study to improve sperm quality should be followed by a follow-up assessment of the fertilization outcome.


Copeia ◽  
1987 ◽  
Vol 1987 (4) ◽  
pp. 1059 ◽  
Author(s):  
H. Craig Ragland ◽  
Eric A. Fischer

1954 ◽  
Vol 107 (2) ◽  
pp. 203-218 ◽  
Author(s):  
JEAN C. DAN ◽  
A. KITAHARA ◽  
T. KOHRI
Keyword(s):  

Zygote ◽  
1993 ◽  
Vol 1 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Akira Ushiyama ◽  
Takeo Araki ◽  
Kazuyoshi Chiba ◽  
Motonori Hoshi

In the starfish, spermatozoa undergo the acrosome reaction upon encountering the jelly coat of eggs. A highly sulphated glycoprotein in the jelly coat is called acrosome-reaction-inducing substance (ARIS) because it is the key signal molecule to trigger the acrosome reaction. The activity of ARIS is mainly attributed to its sulphate and saccharide residues. The extremely large molecular size and speciesspecific action of ARIS suggest the presence of a specific ARIS receptor on the sperm surface, but no experimental evidence for the receptor has been presented. We therefore measured specific binding of ARIS and its pronase digest (P-ARIS), which retains the full activity of ARIS, to homologous spermatozoa by using fluorescien-isothiocyanate-labelled ARIS and125 I-labelled P-ARIS, respectively. The spermatozoa had the ability to bind ARIS, as well as P-ARIS, specifically. The binding was species-specific, and mostly localised to the head region of spermatozoa. Scatchard plot analysis indicated the presence of one class of ARIS receptor on the surface of acrosome-intact speramatozoa. Furthermore, the specific binding of P-ARIS to the anterior region of sperm heads was microscopically confirmed by using P-ARIS conjugated to polystyrene latex beads with intense fluorescence. It is concluded that starfish spermatozoa have a specific receptor for ARIS on the surface of the anterior region of heads.


Sign in / Sign up

Export Citation Format

Share Document