Large-Scale Culture of Vero Cells on GT-2 Microcarrier in Cell Culture Bioreactors

1992 ◽  
pp. 347-349
Author(s):  
Chen Yinliang ◽  
Dong Shupei ◽  
Gu Xiaohua ◽  
Yan Chun ◽  
Song Jiali ◽  
...  
2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Mohd Azmir Arifin ◽  
Maizirwan Mel ◽  
Mohamed Ismail Abdul Karim ◽  
Aini Ideris

The aim of this study is to prepare a model for the production of Newcastle disease virus (NDV) lentogenic F strain using cell culture in bioreactor for live attenuated vaccine preparation. In this study, firstly we investigated the growth of Vero cells in several culture media. The maximum cell number was yielded by culture of Vero cells in Dulbecco's Modified Eagle Medium (DMEM) which was1.93×106 cells/ml. Secondly Vero cells were grown in two-litre stirred tank bioreactor by using several commercial microcarriers. We achieved the maximum cell concentration about7.95×105 cells/ml when using Cytodex 1. Later we produced Newcastle Disease virus in stirred tank bioreactor based on the design developed using Taguchi L4 method. Results reveal that higher multiplicity of infection (MOI) and size of cell inoculums can yield higher virus titer. Finally, virus samples were purified using high-speed centrifugation based on3∗∗(3-1) Fractional Factorial Design. Statistical analysis showed that the maximum virus titer can be achieved at virus sample concentration of 58.45% (v/v), centrifugation speed of 13729 rpm, and centrifugation time of 4 hours. As a conclusion, high yield of virus titer could be achieved through optimization of cell culture in bioreactor and separation by high-speed centrifugation.


1970 ◽  
Vol 7 (5) ◽  
pp. 448-454 ◽  
Author(s):  
Alfred G. Karlson ◽  
Herman R. Seibold ◽  
Robert H. Wolf

Mycobacterium abscessus was isolated from the lungs of an owl monkey which died 27 days after intraperitoneal injection of herpes virus-infected Vero cells. The lungs and liver had multiple microscopic granulomas with acid-fast microorganisms. The mycobacteria also were isolated from a Vero-cell culture inoculated with a suspension of lung and liver. The same microorganism was eventually isolated from Vero cells of the same source as that used to propagate the herpes virus for the original attempt to infect the monkey.


Genetics ◽  
2009 ◽  
Vol 183 (3) ◽  
pp. 1165-1173 ◽  
Author(s):  
Shu Kondo ◽  
Matthew Booker ◽  
Norbert Perrimon

RNAi-mediated gene knockdown in Drosophila melanogaster is a powerful method to analyze loss-of-function phenotypes both in cell culture and in vivo. However, it has also become clear that false positives caused by off-target effects are prevalent, requiring careful validation of RNAi-induced phenotypes. The most rigorous proof that an RNAi-induced phenotype is due to loss of its intended target is to rescue the phenotype by a transgene impervious to RNAi. For large-scale validations in the mouse and Caenorhabditis elegans, this has been accomplished by using bacterial artificial chromosomes (BACs) of related species. However, in Drosophila, this approach is not feasible because transformation of large BACs is inefficient. We have therefore developed a general RNAi rescue approach for Drosophila that employs Cre/loxP-mediated recombination to rapidly retrofit existing fosmid clones into rescue constructs. Retrofitted fosmid clones carry a selection marker and a phiC31 attB site, which facilitates the production of transgenic animals. Here, we describe our approach and demonstrate proof-of-principle experiments showing that D. pseudoobscura fosmids can successfully rescue RNAi-induced phenotypes in D. melanogaster, both in cell culture and in vivo. Altogether, the tools and method that we have developed provide a gold standard for validation of Drosophila RNAi experiments.


1986 ◽  
Vol 84 (1) ◽  
pp. 237-251
Author(s):  
R.J. Hill ◽  
T. Kroft ◽  
M. Zuker ◽  
I.C. Smith

A method is described, based on the phagocytosis of colloidal ferrite particles, which gives highly synchronous populations of Tetrahymena thermophila. To ensure a successful synchrony, the cell culture doubling time, the limits of the phagocytic period and the distribution of cell stages must first be determined. Once these parameters are known, synchrony can be achieved under a variety of growth conditions and with cultures ranging in volume from a few millilitres to 12 litres or more. The main advantages of the method are that the apparatus required is simple, large volumes of cells can be handled easily, and the synchronous populations can be prepared within a few hours. In principle, the method should be applicable to any cell population in which phagocytosis occurs discontinuously over the cell cycle.


Sign in / Sign up

Export Citation Format

Share Document