Dynamic Synthesis of Superhard Materials

Author(s):  
A. N. Dremin ◽  
O. N. Breusov
2008 ◽  
Vol 2 (2) ◽  
pp. 194-205 ◽  
Author(s):  
O. N. Breusov ◽  
A. N. Dremin

2021 ◽  
Vol 7 (8) ◽  
pp. eabc6714 ◽  
Author(s):  
Kolan Madhav Reddy ◽  
Dezhou Guo ◽  
Shuangxi Song ◽  
Chun Cheng ◽  
Jiuhui Han ◽  
...  

The failure of superhard materials is often associated with stress-induced amorphization. However, the underlying mechanisms of the structural evolution remain largely unknown. Here, we report the experimental measurements of the onset of shear amorphization in single-crystal boron carbide by nanoindentation and transmission electron microscopy. We verified that rate-dependent loading discontinuity, i.e., pop-in, in nanoindentation load-displacement curves results from the formation of nanosized amorphous bands via shear amorphization. Stochastic analysis of the pop-in events reveals an exceptionally small activation volume, slow nucleation rate, and lower activation energy of the shear amorphization, suggesting that the high-pressure structural transition is activated and initiated by dislocation nucleation. This dislocation-mediated amorphization has important implications in understanding the failure mechanisms of superhard materials at stresses far below their theoretical strengths.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Zhiqiang Song ◽  
Fei Wang ◽  
Yujie Liu ◽  
Chenhui Su

The method, which obtains a static-dynamic comprehensive effect from superposing static and dynamic effects, is inapplicable to large deformation and nonlinear elastic problems under strong earthquake action. The static and dynamic effects must be analyzed in a unified way. These effects involve a static-dynamic boundary transformation problem or a static-dynamic boundary unified problem. The static-dynamic boundary conversion method is tedious. If the node restraint reaction force caused by a static boundary condition is not applied, then the model is not balanced at zero moment, and the calculation result is distorted. The static numerical solution error is large when the structure possesses tangential static force in a viscoelastic static-dynamic unified boundary. This paper proposed a new static-dynamic unified artificial boundary based on an infinite element in ABAQUS to solve static-dynamic synthesis effects conveniently and accurately. The static and dynamic mapping theories of infinite elements were introduced. The characteristic of the infinite element, which has zero displacement at faraway infinity, was discussed in theory. The equivalent nodal force calculation formula of infinite element unified boundary was deduced from an external wave input. A calculation and application program of equivalent nodal forces was developed using the Python language to complete external wave inputting. This new method does not require a static and dynamic boundary transformation and import of stress field and constraint counterforce of boundary nodes. The static calculation precision of the infinite element unified boundary is more improved than the viscoelastic static-dynamic unified boundary, especially when the static load is in the tangential direction. In addition, the foundation simulation range of finite field can be significantly reduced given the utilization of the infinite element static dynamic unified boundary. The preciseness of static calculation and dynamic calculation and static-dynamic comprehensive analysis are unaffected.


1995 ◽  
Vol 400 ◽  
Author(s):  
S. Vepřek ◽  
M. Haussmann ◽  
S. Reiprich

AbstractWe have developed a theoretical concept for the design of novel superhard materials and verified it experimentally on several systems nc-MenN/a-Si3N4 (nc-MenN is a nanocrystalline transition metal nitride imbedded in a thin amorphous Si3N4 matrix). Hardness in excess of 5000 kg/mm2 (about 50 GPa) and elastic modulus of ≥550 GPa have been achieved [1-3]. Here we address the questions of the universality of the concept for the design of a variety of nc/a systems and the upper limit of the hardness which may be achieved.


2021 ◽  
Author(s):  
Yong Wang ◽  
Wei Wang ◽  
Dongbin Zhang ◽  
Xiaolin Tian ◽  
Jiaojiao Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document