Computational Study of Blood Flow Through Elastic Arteries with Porous Effects

Author(s):  
Anil Kumar ◽  
S. P. Agrawal
2014 ◽  
Vol 67 (7) ◽  
pp. 951-959 ◽  
Author(s):  
Richard A.J. Wain ◽  
Justin P.M. Whitty ◽  
Milind D. Dalal ◽  
Michael C. Holmes ◽  
Waqar Ahmed

2008 ◽  
Vol 08 (03) ◽  
pp. 395-420 ◽  
Author(s):  
NORZIEHA MUSTAPHA ◽  
SANTABRATA CHAKRAVARTY ◽  
PRASHANTA K. MANDAL ◽  
NORSARAHAIDA AMIN

A two-dimensional (2D) nonlinear mathematical model to study the response of the pulsatile flow of blood through a couple of irregular stenoses influenced by externally imposed periodic body acceleration is developed. The model is 2D and axisymmetric with an outline of the stenosis obtained from the three-dimensional (3D) casting of a mildly stenosed artery. The combined influence of an asymmetric shape and surface irregularities of the constrictions is explored in a computational study of blood flow through arterial stenoses with 48% areal occlusion. The arterial wall is treated as an elastic (moving wall) cylindrical tube having a couple of stenoses in its lumen, while the streaming blood is considered to be Newtonian. Solutions of the time-dependent nonlinear Navier–Stokes equations in the cylindrical coordinate system are obtained using a finite difference method based on the nonuniform and nonstaggered grids. The finite difference approximation helps to estimate the effects of body acceleration on the doubly constricted flow phenomena through several graphical representations quantitatively in order to validate the applicability of the present, improved mathematical model.


2018 ◽  
Vol 9 (7) ◽  
pp. 871-879
Author(s):  
Rajesh Shrivastava ◽  
R. S. Chandel ◽  
Ajay Kumar ◽  
Keerty Shrivastava and Sanjeet Kumar

2021 ◽  
Vol 1094 (1) ◽  
pp. 012120
Author(s):  
Hussein Togun ◽  
Ali Abdul Hussain ◽  
Saja Ahmed ◽  
Iman Abdul hussain ◽  
Huda Shaker

Dynamics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 9-17
Author(s):  
Andrea Natale Impiombato ◽  
Giorgio La Civita ◽  
Francesco Orlandi ◽  
Flavia Schwarz Franceschini Zinani ◽  
Luiz Alberto Oliveira Rocha ◽  
...  

As it is known, the Womersley function models velocity as a function of radius and time. It has been widely used to simulate the pulsatile blood flow through circular ducts. In this context, the present study is focused on the introduction of a simple function as an approximation of the Womersley function in order to evaluate its accuracy. This approximation consists of a simple quadratic function, suitable to be implemented in most commercial and non-commercial computational fluid dynamics codes, without the aid of external mathematical libraries. The Womersley function and the new function have been implemented here as boundary conditions in OpenFOAM ESI software (v.1906). The discrepancy between the obtained results proved to be within 0.7%, which fully validates the calculation approach implemented here. This approach is valid when a simplified analysis of the system is pointed out, in which flow reversals are not contemplated.


Sign in / Sign up

Export Citation Format

Share Document