An Experimental Investigation to Analyse the Heat Transfer Characteristics of Hot Surface by Obliquely Impinging Liquid Jet

Author(s):  
Manish K. Agrawal ◽  
Mayank Modak ◽  
Palash Gupta ◽  
Satish Chandra ◽  
Santosh K. Sahu
2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Mayank Modak ◽  
Sandesh S. Chougule ◽  
Santosh K. Sahu

In the present study, an experimental investigation has been carried out to analyze the heat transfer characteristics of CuO–water nanofluids jet on a hot surface. A rectangular stainless steel foil (AISI-304, 0.15 mm thick) used as the test surface is electrically heated to obtain the required initial temperature (500 °C). The distribution of surface heat flux on the target surface is evaluated from the recorded thermal images during transient cooling. The effect of nanoparticle concentration and Reynolds number of the nanofluids on the heat transfer characteristics is studied. Tests are performed for varied range of Reynolds number (5000 ≤ Re ≤ 12,000), two different CuO–water nanofluids concentration (Ф = 0.15%, 0.6%) and two different nozzle to plate distance (l/d = 6, 12). The enhancement in Nusselt number for CuO–water nanofluids was found to be 14% and 90%, for nanofluids concentration of Ф = 0.15% and Ф = 0.60%, respectively, compared to pure water. The test surface characteristics after nanofluids jet impingement are studied using scanning electron microscope (SEM). Based on the investigation, a correlation among various parameters, namely, Reynolds number (Re), Prandtl number (Pr), nozzle to plate distance (l/d), and Nusselt number (Nu), is presented.


Author(s):  
Mayank Modak ◽  
Srikaanth Srinivasan ◽  
Krati Garg ◽  
Sandesh S. Chougule ◽  
Manish K. Agarwal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document