Particle Fluxes at the Edge of the Ross Ice Shelf: the Role of Physical Forcing

Author(s):  
A. Accornero ◽  
A. Bergamasco ◽  
A. Monaco ◽  
S. Tucci
1982 ◽  
Vol 3 ◽  
pp. 146-151 ◽  
Author(s):  
T. J. Hughes

It is proposed that an ice shelf disintegrates when its calving front retreats faster than its grounding line. This paper examines the role of ice thinning in grounding-line retreat. Thinning occurs as a result of creep spreading and ice melting. Thinning by creep is examined for the general regime of bending converging flow in an ice shelf lying in a confined embayment, and at the grounding lines of ice streams that supply the ice shelf and ice rises where the ice shelf is grounded on bedrock. Thinning by melting is examined at these grounding lines for tidal pumping and for descent of surface melt water into strandline crevasses, where concentrated melting is focused at the supposed weak links that connect the ice shelf to its embayment, its ice streams, and its ice rises. Applications are made to the Ross Ice Shelf.


1982 ◽  
Vol 3 ◽  
pp. 146-151 ◽  
Author(s):  
T. J. Hughes

It is proposed that an ice shelf disintegrates when its calving front retreats faster than its grounding line. This paper examines the role of ice thinning in grounding-line retreat. Thinning occurs as a result of creep spreading and ice melting. Thinning by creep is examined for the general regime of bending converging flow in an ice shelf lying in a confined embayment, and at the grounding lines of ice streams that supply the ice shelf and ice rises where the ice shelf is grounded on bedrock. Thinning by melting is examined at these grounding lines for tidal pumping and for descent of surface melt water into strandline crevasses, where concentrated melting is focused at the supposed weak links that connect the ice shelf to its embayment, its ice streams, and its ice rises. Applications are made to the Ross Ice Shelf.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 155
Author(s):  
Fiorenza Torricella ◽  
Romana Melis ◽  
Elisa Malinverno ◽  
Giorgio Fontolan ◽  
Mauro Bussi ◽  
...  

The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann.


2020 ◽  
pp. 1-14
Author(s):  
Richard D. Ray ◽  
Kristine M. Larson ◽  
Bruce J. Haines

Abstract New determinations of ocean tides are extracted from high-rate Global Positioning System (GPS) solutions at nine stations sitting on the Ross Ice Shelf. Five are multi-year time series. Three older time series are only 2–3 weeks long. These are not ideal, but they are still useful because they provide the only in situ tide observations in that sector of the ice shelf. The long tide-gauge observations from Scott Base and Cape Roberts are also reanalysed. They allow determination of some previously neglected tidal phenomena in this region, such as third-degree tides, and they provide context for analysis of the shorter datasets. The semidiurnal tides are small at all sites, yet M2 undergoes a clear seasonal cycle, which was first noted by Sir George Darwin while studying measurements from the Discovery expedition. Darwin saw a much larger modulation than we observe, and we consider possible explanations - instrumental or climatic - for this difference.


Eos ◽  
2012 ◽  
Vol 93 (27) ◽  
pp. 256-256
Author(s):  
Colin Schultz

Nature ◽  
1979 ◽  
Vol 282 (5740) ◽  
pp. 703-705 ◽  
Author(s):  
Douglas R. MacAyeal ◽  
Robert H. Thomas
Keyword(s):  

2016 ◽  
Vol 43 (1) ◽  
pp. 250-255 ◽  
Author(s):  
Oliver J. Marsh ◽  
Helen A. Fricker ◽  
Matthew R. Siegfried ◽  
Knut Christianson ◽  
Keith W. Nicholls ◽  
...  

Geophysics ◽  
2016 ◽  
Vol 81 (1) ◽  
pp. WA21-WA34 ◽  
Author(s):  
Steven A. Arcone ◽  
James H. Lever ◽  
Laura E. Ray ◽  
Benjamin S. Walker ◽  
Gordon Hamilton ◽  
...  

The crevassed firn of the McMurdo shear zone (SZ) within the Ross Ice Shelf may also contain crevasses deep within its meteoric and marine ice, but the surface crevassing prevents ordinary vehicle access to investigate its structure geophysically. We used a lightweight robotic vehicle to tow 200- and 400-MHz ground-penetrating radar antennas simultaneously along 100 parallel transects over a [Formula: see text] grid spanning the SZ width. Transects were generally orthogonal to the ice flow. Total firn and meteoric ice thickness was approximately 160 m. Firn crevasses profiled at 400 MHz were up to 16 m wide, under snow bridges up to 10 m thick, and with strikes near 35°–40° to the transect direction. From the top down, 200-MHz profiles revealed firn diffractions originating to a depth of approximately 40 m, no discernible structure within the meteoric ice, a discontinuous transitional horizon, and at least 20 m of stratified marine ice; 28–31 m of freeboard found more marine ice exists. Based on 10 consecutive transects covering approximately [Formula: see text], we preliminarily interpreted the transitional horizon to be a thin saline layer, and marine ice hyperbolic diffractions and reflections to be responses to localized fractures, and crevasses filled with unstratified marine ice, all at strikes from 27° to 50°. We preliminarily interpreted off-nadir, marine ice horizons to be responses to linear and folded faults, similar to some in firn. The coinciding and synchronously folded areas of fractured firn and marine ice suggested that the visibly unstructured meteoric ice beneath our grid was also fractured, but either never crevassed, crevassed and sutured without marine ice inclusions, or that any ice containing crevasses might have eroded before marine ice accretion. We will test these interpretations with analysis of all transects and by extending our grid and increasing our depth ranges.


Sign in / Sign up

Export Citation Format

Share Document