scholarly journals On the Disintegration of Ice Shelves: the Role of Thinning

1982 ◽  
Vol 3 ◽  
pp. 146-151 ◽  
Author(s):  
T. J. Hughes

It is proposed that an ice shelf disintegrates when its calving front retreats faster than its grounding line. This paper examines the role of ice thinning in grounding-line retreat. Thinning occurs as a result of creep spreading and ice melting. Thinning by creep is examined for the general regime of bending converging flow in an ice shelf lying in a confined embayment, and at the grounding lines of ice streams that supply the ice shelf and ice rises where the ice shelf is grounded on bedrock. Thinning by melting is examined at these grounding lines for tidal pumping and for descent of surface melt water into strandline crevasses, where concentrated melting is focused at the supposed weak links that connect the ice shelf to its embayment, its ice streams, and its ice rises. Applications are made to the Ross Ice Shelf.

1982 ◽  
Vol 3 ◽  
pp. 146-151 ◽  
Author(s):  
T. J. Hughes

It is proposed that an ice shelf disintegrates when its calving front retreats faster than its grounding line. This paper examines the role of ice thinning in grounding-line retreat. Thinning occurs as a result of creep spreading and ice melting. Thinning by creep is examined for the general regime of bending converging flow in an ice shelf lying in a confined embayment, and at the grounding lines of ice streams that supply the ice shelf and ice rises where the ice shelf is grounded on bedrock. Thinning by melting is examined at these grounding lines for tidal pumping and for descent of surface melt water into strandline crevasses, where concentrated melting is focused at the supposed weak links that connect the ice shelf to its embayment, its ice streams, and its ice rises. Applications are made to the Ross Ice Shelf.


1979 ◽  
Vol 24 (90) ◽  
pp. 500 ◽  
Author(s):  
C. R. Bentley ◽  
L. Greischar

Abstract Taking various retreat-rates for the presumed grounded ice sheet in the Ross embayment during Wisconsin time, as calculated by Thomas (Thomas and Bentley, 1978), and assuming a time constant of 4400 years for isostatic rebound, a sea-floor uplift of 100±50 m still to be expected in the grid western part of the Ross Ice Shelf can be calculated. The expected uplift diminishes from grid west to grid east, and is probably negligible in the eastern half of the shelf area. There are extensive areas near the present grounding line where the water depth beneath the shelf is less than 100 m, so that uplift would lead to grounding. As grounding occurred, the neighboring ice shelf would thicken, causing grounding to advance farther. This process would probably extend the grounding line to a position running grid north-eastward across the shelf from the seaward end of Roosevelt Island, deeply indented by the extensions of the present ice streams. Floating ice would remain in the grid south-eastern half of the shelf.


2012 ◽  
Vol 53 (60) ◽  
pp. 267-280 ◽  
Author(s):  
S.P. Carter ◽  
H.A. Fricker

AbstractRecent satellite studies have shown that active subglacial lakes exist under the Antarctic ice streams and persist almost to their grounding lines. When the lowest-lying lakes flood, the water crosses the grounding line and enters the sub-ice-shelf cavity. Modeling results suggest that this additional freshwater influx may significantly enhance melting at the ice-shelf base. We examine the spatial and temporal variability in subglacial water supply to the grounding lines of the Siple Coast ice streams, by combining estimates for lake volume change derived from Ice, Cloud and land Elevation Satellite (ICESat) data with a model for subglacial water transport. Our results suggest that subglacial outflow tends to concentrate towards six embayments in the Siple Coast grounding line. Although mean grounding line outflow is ~60m3 s–1 for the entire Siple Coast, maximum local grounding line outflow may temporarily exceed 300 m3 s–1 during the synchronized flooding of multiple lakes in a hydrologic basin. Variability in subglacial outflow due to subglacial lake drainage may account for a substantial portion of the observed variability in freshwater flux out of the Ross Ice Shelf cavity. The temporal variability in grounding line outflow results in a net reduction in long-term average melt rate, but temporary peak melting rates may exceed the long-term average by a factor of three.


1979 ◽  
Vol 24 (90) ◽  
pp. 167-177 ◽  
Author(s):  
Robert H. Thomas

AbstractMarine ice sheets rest on land that, for the most part, is below sea-level. Ice that flows across the grounding line, where the ice sheet becomes afloat, either calves into icebergs or forms a floating ice shelf joined to the ice sheet. At the grounding line there is a transition from ice-sheet dynamics to ice-shelf dynamics, and the creep-thinning rate in this region is very sensitive to sea depth; rising sea-level causes increased thinning-rates and grounding-line retreat, falling sea-level has the reverse effect. If the bedrock slopes down towards the centre of the ice sheet there may be only two stable modes: a freely-floating ice shelf or a marine ice sheet that extends to the edge of the continental shelf. Once started, collapse of such an ice sheet to form an ice shelf may take place extremely rapidly. Ice shelves which form in embayments of a marine ice sheet, or which are partially grounded, have a stabilizing influence since ice flowing across the grounding line has to push the ice shelf past its sides. Retreat of the grounding line tends to enlarge the ice shelf, which ultimately may become large enough to prevent excessive outflow from the ice sheet so that a new equilibrium grounding line is established; removal of the ice shelf would allow retreat to continue. During the late-Wisconsin glacial maximum there may have been marine ice sheets in the northern hemisphere but the only current example is the West Antarctic ice sheet. This is buttressed by the Ross and Ronne Ice Shelves, and if climatic warming were to prohibit the existence of these ice shelves then the ice sheet would collapse. Field observations suggest that, at present, the ice sheet may be advancing into parts of the Ross Ice Shelf. Such advance, however, would not ensure the security of the ice sheet since ice streams that drain to the north appear to flow directly into the sea with little or no ice shelf to buttress them. If these ice streams do not flow over a sufficiently high bedrock sill then they provide the most likely avenues for ice-sheet retreat.


2021 ◽  
Author(s):  
Reinhard Drews ◽  
Christian Wild ◽  
Oliver Marsh ◽  
Wolfgang Rack ◽  
Todd Ehlers ◽  
...  

<p>Dynamics of polar outlet glaciers vary with ocean tides, providing a natural laboratory to understand basal processes beneath ice streams, ice rheology and ice-shelf buttressing. We apply Terrestrial Radar Interferometry to close the spatiotemporal gap between localized, temporally well-resolved GNSS and area-wide but sparse satellite observations. Three-hour flowfields collected over an eight day period at Priestley Glacier, Antarctica, validate and provide the spatial context for concurrent GNSS measurements. Ice flow is fastest during falling tides and slowest during rising tides. Principal components of the timeseries prove upstream propagation of tidal signatures $>$ 10 km away from the grounding line. Hourly, cm-scale horizontal and vertical flexure patterns occur $>$6 km upstream of the grounding line. Vertical uplift upstream of the grounding line is consistent with ephemeral re-grounding during low-tide impacting grounding-zone stability. On the freely floating ice shelves, we find velocity peaks both during high- and low-tide suggesting that ice-shelf buttressing varies temporally as a function of flexural bending from tidal displacement. Taken together, these observations identify tidal imprints on ice-stream dynamics on new temporal and spatial scales providing constraints for models designed to isolate dominating processes in ice-stream and ice-shelf mechanics.</p>


1978 ◽  
Vol 10 (2) ◽  
pp. 150-170 ◽  
Author(s):  
Robert H. Thomas ◽  
Charles R. Bentley

Marine ice sheets are grounded on land which was below sea level before it became depressed under the ice-sheet load. They are inherently unstable and, because of bedrock topography after depression, the collapse of a marine ice sheet may be very rapid. In this paper equations are derived that can be used to make a quantitative estimate of the maximum size of a marine ice sheet and of when and how rapidly retreat would take place under prescribed conditions. Ice-sheet growth is favored by falling sea level and uplift of the seabed. In most cases the buttressing effect of a partially grounded ice shelf is a prerequisite for maximum growth out to the edge of the continental shelf. Collapse is triggered most easily by eustatic rise in sea level, but it is possible that the ice sheet may self-destruct by depressing the edge of the continental shelf so that sea depth is increased at the equilibrium grounding line.Application of the equations to a hypothetical “Ross Ice Sheet” that 18,000 yr ago may have covered the present-day Ross Ice Shelf indicates that, if the ice sheet existed, it probably extended to a line of sills parallel to the edge of the Ross Sea continental shelf. By allowing world sea level to rise from its late-Wisconsin minimum it was possible to calculate retreat rates for individual ice streams that drained the “Ross Ice Sheet.” For all the models tested, retreat began soon after sea level began to rise (∼15,000 yr B.P.). The first 100 km of retreat took between 1500 and 2500 yr but then retreat rates rapidly accelerated to between 0.5 and 25 km yr−1, depending on whether an ice shelf was present or not, with corresponding ice velocities across the grounding line of 4 to 70 km yr−1. All models indicate that most of the present-day Ross Ice Shelf was free of grounded ice by about 7000 yr B.P. As the ice streams retreated floating ice shelves may have formed between promontories of slowly collapsing stagnant ice left behind by the rapidly retreating ice streams. If ice shelves did not form during retreat then the analysis indicates that most of the West Antarctic Ice Sheet would have collapsed by 9000 yr B.P. Thus, the present-day Ross Ice Shelf (and probably the Ronne Ice Shelf) serves to stabilize the West Antarctic Ice Sheet, which would collapse very rapidly if the ice shelves were removed. This provides support for the suggestion that the 6-m sea-level high during the Sangamon Interglacial was caused by collapse of the West Antarctic Ice Sheet after climatic warming had sufficiently weakened the ice shelves. Since the West Antarctic Ice Sheet still exists it seems likely that ice shelves did form during Holocene retreat. Their effect was to slow and, finally, to halt retreat. The models that best fit available data require a rather low shear stress between the ice shelf and its sides, and this implies that rapid shear in this region encouraged the formation of a band of ice with a preferred crystal fabric, as appears to be happening today in the floating portions of fast bounded glaciers.Rebound of the seabed after the ice sheet had retreated to an equilibrium position would allow the ice sheet to advance once more. This may be taking place today since analysis of data from the Ross Ice Shelf indicates that the southeast corner is probably growing thicker with time, and if this persists then large areas of ice shelf must become grounded. This would restrict drainage from West Antarctic ice streams which would tend to thicken and advance their grounding lines into the ice shelf.


1979 ◽  
Vol 24 (90) ◽  
pp. 167-177 ◽  
Author(s):  
Robert H. Thomas

AbstractMarine ice sheets rest on land that, for the most part, is below sea-level. Ice that flows across the grounding line, where the ice sheet becomes afloat, either calves into icebergs or forms a floating ice shelf joined to the ice sheet. At the grounding line there is a transition from ice-sheet dynamics to ice-shelf dynamics, and the creep-thinning rate in this region is very sensitive to sea depth; rising sea-level causes increased thinning-rates and grounding-line retreat, falling sea-level has the reverse effect. If the bedrock slopes down towards the centre of the ice sheet there may be only two stable modes: a freely-floating ice shelf or a marine ice sheet that extends to the edge of the continental shelf. Once started, collapse of such an ice sheet to form an ice shelf may take place extremely rapidly. Ice shelves which form in embayments of a marine ice sheet, or which are partially grounded, have a stabilizing influence since ice flowing across the grounding line has to push the ice shelf past its sides. Retreat of the grounding line tends to enlarge the ice shelf, which ultimately may become large enough to prevent excessive outflow from the ice sheet so that a new equilibrium grounding line is established; removal of the ice shelf would allow retreat to continue. During the late-Wisconsin glacial maximum there may have been marine ice sheets in the northern hemisphere but the only current example is the West Antarctic ice sheet. This is buttressed by the Ross and Ronne Ice Shelves, and if climatic warming were to prohibit the existence of these ice shelves then the ice sheet would collapse. Field observations suggest that, at present, the ice sheet may be advancing into parts of the Ross Ice Shelf. Such advance, however, would not ensure the security of the ice sheet since ice streams that drain to the north appear to flow directly into the sea with little or no ice shelf to buttress them. If these ice streams do not flow over a sufficiently high bedrock sill then they provide the most likely avenues for ice-sheet retreat.


1993 ◽  
Vol 39 (133) ◽  
pp. 538-552 ◽  
Author(s):  
Robert Bindschadler

Abstract Satellite imagery is used as a basis to review and critique the results of studies at the mouths of Ice Streams Β and C and Crary Ice Rise. In many cases, these past analyses are extended by taking advantage of the broad coverage within each image. New perspectives are provided by the image data and some longstanding controversies are resolved. The grounding line is easily delineated and mapped in areas covered by imagery. Extensive areas of grounded ice with complex patterns of flow stripes are identified on the flanks of Crary Ice Rise. The imagery also allows a corrected map of surface topography in the vicinity of the Downstream Β camp. New questions are posed by hitherto unseen features. Data from the IGY traverse of the Ross Ice Shelf in 1957 are included to demonstrate that large changes have occurred in the past almost 30 years in the area upstream of Crary Ice Rise. These changes include modifications in the surface topography, elimination of crevasses and increases in the ice thickness by approximately 60 m.


2012 ◽  
Vol 58 (208) ◽  
pp. 203-215 ◽  
Author(s):  
Christopher M. Little ◽  
Daniel Goldberg ◽  
Anand Gnanadesikan ◽  
Michael Oppenheimer

AbstractIce-shelf basal melting is tightly coupled to ice-shelf morphology. Ice shelves, in turn, are coupled to grounded ice via their influence on compressive stress at the grounding line (‘ice-shelf buttressing’). Here, we examine this interaction using a local parameterization that relates the basal melt rate to the ice-shelf thickness gradient. This formulation permits a closed-form solution for a steady-state ice tongue. Time-dependent numerical simulations reveal the spatial and temporal evolution of ice-shelf/ice-stream systems in response to changes in ocean temperature, and the influence of morphology-dependent melting on grounding-line retreat. We find that a rapid (<1 year) re-equilibration in upstream regions of ice shelves establishes a spatial pattern of basal melt rates (relative to the grounding line) that persists over centuries. Coupling melting to ice-shelf shape generally, but not always, increases grounding-line retreat rates relative to a uniform distribution with the same area- average melt rate. Because upstream ice-shelf thickness gradients and retreat rates increase nonlinearly with thermal forcing, morphology-dependent melting is more important to the response of weakly buttressed, strongly forced ice streams grounded on beds that slope upwards towards the ocean (e.g. those in the Amundsen Sea).


2018 ◽  
Author(s):  
Dominic A. Hodgson ◽  
Tom A. Jordan ◽  
Jan De Rydt ◽  
Peter T. Fretwell ◽  
Samuel A. Seddon ◽  
...  

Abstract. The recent rapid growth of rifts in the Brunt Ice Shelf appears to signal the onset of its largest calving event since records began in 1915. The aim of this study is to determine whether this calving event will lead to a new steady state where the Brunt Ice Shelf remains in contact with the bed, or an unpinning from the bed, which could pre-dispose it to accelerated flow or possible break-up. We use a range of geophysical data to reconstruct the seafloor bathymetry and ice shelf geometry, to examine past ice sheet configurations in the Brunt Basin, and to define the present-day geometry of the contact between the Brunt Ice Shelf and the bed. Results show that during past ice advances grounded ice streams converged in the Brunt Basin from the south and east. The ice then retreated pausing on at least three former grounding lines marked by topographic highs, and transverse ridges on the flanks of the basin. These have subsequently formed pinning points for advancing ice shelves. The ice shelf geometry and bathymetry measurements show that the base of the Brunt Ice Shelf now only makes contact with one of these topographic highs. This contact is limited to an area of less than 1.3 to 3 km2 and results in a compressive regime that helps to maintain the ice shelf. The maximum overlap between ice shelf thickness and the bathymetry is 2–25 m, and is contingent on the presence of incorporated iceberg keels, which protrude beneath the base of the ice shelf. The future of the ice shelf is dependent on whether the expected calving event causes full or partial loss of contact with the bed, and whether the subsequent response causes re-grounding within a predictable period, or a loss of structural integrity resulting from properties inherited at the grounding line.


Sign in / Sign up

Export Citation Format

Share Document