Threats to Global Water Security: Population Growth, Terrorism, Climate Change, or Commercialisation?

Author(s):  
J. A. A. Jones
2014 ◽  
Vol 5 (1) ◽  
pp. 55-65 ◽  
Author(s):  
A. J. J. van Soesbergen ◽  
M. Mulligan

Abstract. This paper describes the application of WaterWorld (www.policysupport.org/waterworld) to the Peruvian Amazon, an area that is increasingly under pressure from deforestation and water pollution as a result of population growth, rural-to-urban migration and oil and gas extraction, potentially impacting both water quantity and water quality. By applying single and combined plausible scenarios of climate change, deforestation around existing and planned roads, population growth and rural–urban migration, mining and oil and gas exploitation, we explore the potential combined impacts of these multiple changes on water resources in the Peruvian Amazon.


2011 ◽  
pp. 1768-1781
Author(s):  
Shinyi Lee ◽  
Tan Yigitcanlar ◽  
Prasanna Egodawatta ◽  
Ashantha Goonetilleke

As a result of rapid urbanisation, population growth, changes in lifestyle, pollution and the impacts of climate change, water provision has become a critical challenge for planners and policy-makers. In the wake of increasingly difficult water provision and drought, the notion that freshwater is a finite and vulnerable resource is increasingly being realised. Many city administrations around the world are struggling to provide water security for their residents to maintain lifestyle and economic growth. This chapter reviews the global challenge of providing freshwater to sustain lifestyles and economic growth, and the contributing challenges of climate change, urbanisation, population growth and problems in rainfall distribution. The chapter proceeds to evaluate major alternatives to current water sources such as conservation, recycling and reclamation, and desalination. Integrated water resource management is briefly looked at to explore its role in complementing water provision. A comparative study on alternative resources is undertaken to evaluate their strengths, weaknesses, opportunities and constraints, and the results are discussed.


Author(s):  
Shinyi Lee ◽  
Tan Yigitcanlar ◽  
Prasanna Egodawatta ◽  
Ashantha Goonetilleke

As a result of rapid urbanisation, population growth, changes in lifestyle, pollution and the impacts of climate change, water provision has become a critical challenge for planners and policy-makers. In the wake of increasingly difficult water provision and drought, the notion that freshwater is a finite and vulnerable resource is increasingly being realised. Many city administrations around the world are struggling to provide water security for their residents to maintain lifestyle and economic growth. This chapter reviews the global challenge of providing freshwater to sustain lifestyles and economic growth, and the contributing challenges of climate change, urbanisation, population growth and problems in rainfall distribution. The chapter proceeds to evaluate major alternatives to current water sources such as conservation, recycling and reclamation, and desalination. Integrated water resource management is briefly looked at to explore its role in complementing water provision. A comparative study on alternative resources is undertaken to evaluate their strengths, weaknesses, opportunities and constraints, and the results are discussed.


2021 ◽  
Author(s):  
Ibrahim El Khoury ◽  
Caroline Merheb ◽  
Sophia Ghanimeh ◽  
Maya Atieh ◽  
Marianne Saba

Abstract Developing countries rely to a large extent on international donors to improve water security. Yet, international interventions often end up with low efficiency impacts because of the lack of a priori comprehensive projections. With this in mind, this paper presents a scenario-based methodology to forecast river water quantity and quality in a common multi-stressor situation, that is combined impact of climate change, population growth and wastewater discharge. As an illustrative case, El Kalb River basin, in Lebanon, was simulated under four scenarios up to year 2050, using Water Evaluation and Planning (WEAP) model. The observed trends indicate that mean annual streamflow and flow to groundwater could decrease by around 10 to 23% each due to climate change, while water demand is expected to increase by 16 to 32%. As to water quality, the maximum BOD of 68 mg/L (in 2019) can be decreased by introducing wastewater treatment (starting 2021 as planned by national authorities) to 44 mg/L, only to increase again to 63 mg/L in 2050 due to population growth. Considering climate change, water quality is expected to deteriorate further and the maximum BOD would reach 118 mg/L and 147 mg/L in 2050 under RCP 4.5 and RCP 8.5 scenarios, respectively. Even though the planned wastewater treatment facilities would reduce BOD by 34%, it was shown that the river would never meet water standards – under any of the proposed scenarios. The approach adopted in this paper is recommended for quantification of the efficiency of river protection plans in developing areas.


2021 ◽  
pp. 1-21
Author(s):  
Ravishankar Kumar ◽  
Prafulla Kumar Sahoo ◽  
Sunil Mittal

Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1135
Author(s):  
Carolyn Payus ◽  
Lim Ann Huey ◽  
Farrah Adnan ◽  
Andi Besse Rimba ◽  
Geetha Mohan ◽  
...  

For countries in Southeast Asia that mainly rely on surface water as their water resource, changes in weather patterns and hydrological systems due to climate change will cause severely decreased water resource availability. Warm weather triggers more water use and exacerbates the extraction of water resources, which will change the operation patterns of water usage and increase demand, resulting in water scarcity. The occurrence of prolonged drought upsets the balance between water supply and demand, significantly increasing the vulnerability of regions to damaging impacts. The objectives of this study are to identify trends and determine the impacts of extreme drought events on water levels for the major important water dams in the northern part of Borneo, and to assess the risk of water insecurity for the dams. In this context, remote sensing images are used to determine the degree of risk of water insecurity in the regions. Statistical methods are used in the analysis of daily water levels and rainfall data. The findings show that water levels in dams on the North and Northeast Coasts of Borneo are greatly affected by the extreme drought climate caused by the Northeast Monsoon, with mild to the high risk recorded in terms of water insecurity, with only two of the water dams being water-secure. This study shows how climate change has affected water availability throughout the regions.


Author(s):  
Brian Stiber ◽  
Asfaw Beyene

Climate change, drought, population growth and increased energy and water costs are all forces driving exploration into alternative, sustainable resources. The abundance of untapped wave energy often presents an opportunity for research into exploiting this resource to meet the energy and water needs of populated coastal regions. This paper investigates the potential and impact of harnessing wave energy for the purpose of seawater desalination. First the SWAN wave modeling software was used to evaluate the size and character of the wave resource. These data are used to estimate the cost of water for wave-powered desalination taking a specific region as a case example. The results indicate that, although the cost of water from this technology is not economically competitive at this time, the large available resource confirms the viability of significantly supplementing current freshwater supplies. The results also confirm that research into the feasibility of wave power as a source of energy and water in the area is warranted, particularly as water and energy become more scarce and expensive coinciding with the maturity of commercial wave energy conversion.


Sign in / Sign up

Export Citation Format

Share Document