Glacier Motion/Ice Velocity

Author(s):  
Terry Hughes
Keyword(s):  
2015 ◽  
Author(s):  
James D. Forbes ◽  
John Tyndall
Keyword(s):  

Author(s):  
M.F. Meier ◽  
Lowell A. Rasmussen ◽  
R.M. Krimmel ◽  
R.W. Olsen ◽  
David Frank
Keyword(s):  

1888 ◽  
Vol 20 ◽  
pp. 481 ◽  
Author(s):  
Wm. Luttrell Rogers
Keyword(s):  

2001 ◽  
Vol 47 (158) ◽  
pp. 472-480 ◽  
Author(s):  
Jeffrey L. Kavanaugh ◽  
Garry K. C. Clarke

AbstractThree episodes of strong basal motion occurred at Trapridge Glacier, Yukon Territory, Canada, on 11 June 1995 following the establishment of a connected subglacial drainage system. Responses to these “spring events” are noted in the records for 42 instruments and were recorded throughout the ∼60 000 m2 study area. Strong basal motion during the events is indicated by ploughmeter, load-bolt and vertical-strain records, and abrupt pressure changes in several transducer records denote damage caused by extreme pressure pulses. These pressure pulses, generated by the abrupt basal motion, also resulted in the failure of seven pressure sensors. Records for pressure, turbidity and conductivity sensors indicate that basal drainage patterns did not change significantly during the events. Geophone records suggest that the episodes of basal motion were precipitated by the gradual failure of a “sticky spot” following hydraulic connection of part of the study area. This failure resulted in the transfer of basal stress to the unconnected region of the bed during the course of the events. No evidence for strong basal motion is seen in the instrument records for several weeks following the events, suggesting that the mechanical adjustments resulted in a stable configuration of basal stresses. This event illustrates how unstable situations can be quickly accommodated by mechanical adjustments at the glacier bed.


1971 ◽  
Vol 10 (59) ◽  
pp. 211-225 ◽  
Author(s):  
E. Dorrer

AbstractThe movement at a marginal location on the Ward Hunt Ice Shelf, northern Ellesmere Island, was determined by repeated survey measurements with theodolite and geodimeter. The purpose and duration of the field work, and reduction of the observational data are described, and the resulting mean ice velocity of 0.53 m year-1is discussed. Strain-rates of a 1 km by 1 km deformation figure are determined. The parametersnandBof Glen’s power flow law are determined by using the equations given by Nye and Weertman. The results are compared with experimental data. Computed ice stresses show that the “ridge-and-trough" structure on the ice shelf surface is not originated by internal ice forces. The elevations of all survey markers have been determined from vertical-angle measurements, and the peculiarities of atmospheric refraction in near-surface layers are discussed.


2005 ◽  
Vol 42 ◽  
pp. 67-70 ◽  
Author(s):  
David M. Chandler ◽  
Richard I. Waller ◽  
William G. Adam

AbstractMeasurements of basal ice deformation at the margin of Russell Glacier, West Greenland, have provided an opportunity to gain more insight into basal processes occurring near the margin. The basal ice layer comprises a debris-rich, heterogeneous stratified facies, overlain by a comparatively debris-poor dispersed facies. Ice velocities were obtained from anchors placed in both ice facies, at three sites under 5–15 m ice depth. Mean velocities ranged from 20 to 43 m a–1, and velocity gradients indicate high shear strain rates within the basal ice. Stick–slip motion and diurnal variations were observed during measurements at short (1–5 min) time intervals. Vertical gradients in horizontal ice velocity indicate two modes of deformation: (1) viscous deformation within the stratified ice facies, and (2) shear at the interface between the two basal ice facies. Deformation mode 1 may contribute to the folding and shear structures observed in the stratified facies. Deformation mode 2 may generate the stick–slip motion and be associated with the formation of debris bands. Active deformation close to the margin suggests that structures observed within the basal ice are only partially representative of processes occurring near the bed in areas away from the glacier margin.


1996 ◽  
Vol 23 ◽  
pp. 209-216 ◽  
Author(s):  
Eric Rignot ◽  
Rick Forster ◽  
Bryan Isacks

The first topographic and ice-motion maps of the northwestern flank of Hielo Patagónico Norte (HPN, northern Patagonia Icefield), in Chile, were produced using satellite synthetic-aperture interferometric radar data acquired by NASA’s Spaceborne Imaging Radar C instrument in October 1994. The topographic map has a 10 m vertical precision with a 30 m horizontal spacing, which should be sufficient to serve as a reference for monitoring future mass changes of the icefield. The ice-motion map is accurate to within 4 mm d−1 (or 1 m a−1). The radar-derived surface topography and ice velocity are used to estimate the ice discharge from the accumulation area of four outlet glaciers, and the calving flux and mass balance of Glaciar San Rafael. The results demonstrate the use of SAR interferometry for monitoring glaciological parameters on a spatial and temporal scale unattainable by any other means.


Sign in / Sign up

Export Citation Format

Share Document