Direct Displacement-Based Seismic Design Method of High-Rise Buildings Considering Higher Mode Effects

Author(s):  
Xiaoling Cui ◽  
Xingwen Liang ◽  
Li Xin
2011 ◽  
Vol 250-253 ◽  
pp. 2186-2195
Author(s):  
Ke Jia Yang ◽  
Lin Zhu Sun ◽  
Lian Meng Chen

Based on mechanical characteristics of high rise structures with strengthened stories, the author performed direct displacement based seismic design on a high rise structure with 2 strengthened stories according to the direct displacement based seismic design principle. The performance levels are set to be “serviceability” under medium earthquake and “life safety” under major earthquake, respectively. The design procedures are with the following features: (1) Definition and selection of “key” stories are based on mechanical characteristics of high rise structures with strengthened stories; (2) Determination of mode number and calculation of horizontal earthquake action verified the availability of the design procedure; (3) some new ideas are proposed to improve the earthquake action calculation and structural performance control. The design procedure verified the effectiveness, feasibility and availability of the proposed direct displacement based seismic design method.


2012 ◽  
Vol 166-169 ◽  
pp. 640-644
Author(s):  
Qian Zhang ◽  
Ya Feng Yue ◽  
Ergang Xiong

According to lots of documents previously studied, a seismic design method is put forward based on displacement for steel moment frame. This method is established in condition that the yield displacement of steel frame can be determined by its geometrical dimension; then the objective displacement (ultimate displacement) can be determined in light of performance level of the structure, and the corresponding coefficient of ductility can be obtained. Thereafter, the design base shear of steel frame structure can be calculated by the use of reduced elastic spectrum. Thus, the design of stiffness and capacity can be conducted on steel frame structure. The analysis of case study indicates that the displacement-based seismic design method addressed herein is of reasonable safety and reliability, and of operational convenience, which can still realize the seismic design of steel frame structure at different performance levels.


2005 ◽  
Vol 21 (2) ◽  
pp. 117-124 ◽  
Author(s):  
Y.-Y. Lin ◽  
K.-C. Chang ◽  
Y.-L. Wang

AbstractFor performance-based seismic engineering of buildings, the direct displacement-based seismic design method is different from the coefficient method used in FEMA-273 and the capacity spectrum method adopted in ATC-40. The method not only is a linear static procedure but also is applied to the design of new constructions. This paper concerns with experimental studies on the accuracy of the direct displacement-based design procedure. Experimental results of three reinforced concrete (RC) columns designed by the displacement procedure are presented and discussed through pseudo-dynamic tests and cyclic loading tests. From the tests, it is shown that the stiffness degrading factor of RC columns plays a key role. The direct displacement-based seismic design method can reliably capture the maximum displacement demand of the test RC columns if the stiffness degrading factor adopted in the displacement design method for RC material is adequate.


Sign in / Sign up

Export Citation Format

Share Document