Automation of Cell Line Development Using the OptiCHO Expression System

Author(s):  
Andrea Salmén ◽  
Kristina Lindgren ◽  
Lovisa Bylund ◽  
Gittan Gelius ◽  
Christel Fenge ◽  
...  
1992 ◽  
Vol 284 (3) ◽  
pp. 725-732 ◽  
Author(s):  
A S Pollock ◽  
D H Lovett

We used an enhancerless U3 mutant retroviral vector to deliver chimeras of the phosphoenolpyruvate carboxykinase (PEPCK) promoter region to a renal epithelial cell line capable of expressing PEPCK mRNA. Chimeras consisting of the PEPCK promoter and chloramphenicol acetyltransferase, neomycin phosphotransferase or human growth hormone genes were expressed after viral infection of the NRK52E renal epithelial cell line. Virus-delivered sequences in which the direction of PEPCK promoter transcription was antegrade to the normal direction of the long terminal repeat (LTR)-initiated transcription correctly upon stimulation with dexamethasone or 8-bromo cyclic AMP and upon lowering of the extracellular pH. Fluorescent primer extension in situ using primers specific for virus-delivered sequences of antegrade constructs indicated that a large fraction of NRK52E cells could be infected by co-cultivation with virus-producing psi-2 cells without G418 selection. Virus-delivered constructs whose orientation was opposite to that of the LTRs were expressed at very low levels, with transcripts detectable by PCR only in RNA from cyclic AMP-treated cells. Using reverse transcription/PCR, we demonstrated that the chimeric transcripts were from the internal PEPCK promoter rather than a functional or reconstituted Moloney LTR. PEPCK-reporter chimeras delivered by retroviral vectors demonstrated a level of expression more consistent with the level of expression of the native PEPCK gene than did transfected chimeras. This expression system should prove useful for studies of the physiological modulation of gene expression in renal tissues.


2020 ◽  
Author(s):  
Tobias Groß ◽  
Csaba Jeney ◽  
Darius Halm ◽  
Günter Finkenzeller ◽  
G. Björn Stark ◽  
...  

AbstractThe homogeneity of the genetically modified single-cells is a necessity for many applications such as cell line development, gene therapy, and tissue engineering and in particular for regenerative medical applications. The lack of tools to effectively isolate and characterize CRISPR/Cas9 engineered cells is considered as a significant bottleneck in these applications. Especially the incompatibility of protein detection technologies to confirm protein expression changes without a preconditional large-scale clonal expansion, creates a gridlock in many applications. To ameliorate the characterization of engineered cells, we propose an improved workflow, including single-cell printing/isolation technology based on fluorescent properties with high yield, a genomic edit screen (surveyor assay), mRNA rtPCR assessing altered gene expression and a versatile protein detection tool called emulsion-coupling to deliver a high-content, unified single-cell workflow. The workflow was exemplified by engineering and functionally validating RANKL knockout immortalized mesenchymal stem cells showing altered bone formation capacity of these cells. The resulting workflow is economical, without the requirement of large-scale clonal expansions of the cells with overall cloning efficiency above 30% of CRISPR/Cas9 edited cells. Nevertheless, as the single-cell clones are comprehensively characterized at an early, highly parallel phase of the development of cells including DNA, RNA, and protein levels, the workflow delivers a higher number of successfully edited cells for further characterization, lowering the chance of late failures in the development process.Author summaryI completed my undergraduate degree in biochemistry at the University of Ulm and finished my master's degree in pharmaceutical biotechnology at the University of Ulm and University of applied science of Biberach with a focus on biotechnology, toxicology and molecular biology. For my master thesis, I went to the University of Freiburg to the department of microsystems engineering, where I developed a novel workflow for cell line development. I stayed at the institute for my doctorate, but changed my scientific focus to the development of the emulsion coupling technology, which is a powerful tool for the quantitative and highly parallel measurement of protein and protein interactions. I am generally interested in being involved in the development of innovative molecular biological methods that can be used to gain new insights about biological issues. I am particularly curious to unravel the complex and often poorly understood protein interaction pathways that are the cornerstone of understanding cellular functionality and are a fundamental necessity to describe life mechanistically.


2016 ◽  
Vol 505 ◽  
pp. 73-75 ◽  
Author(s):  
Ildana Valisheva ◽  
Reed J. Harris ◽  
Judith Zhu-Shimoni

2013 ◽  
Vol 7 (S6) ◽  
Author(s):  
Pierre-Alain Girod ◽  
Valérie Le Fourn ◽  
David Calabrese ◽  
Alexandre Regamey ◽  
Deborah Ley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document