Brain Tumors: Diagnostic Impact of PET Using Radiolabelled Amino Acids

Author(s):  
Karl-Josef Langen ◽  
Matthias Weckesser ◽  
Frank Floeth
2011 ◽  
Vol 114 (6) ◽  
pp. 1662-1671 ◽  
Author(s):  
Seunguk Oh ◽  
Alexander K. Tsai ◽  
John R. Ohlfest ◽  
Angela Panoskaltsis-Mortari ◽  
Daniel A. Vallera

Object The authors of this study aimed to genetically design a bispecific targeted toxin that would simultaneously target overexpressed markers on glioma as well as the tumor vasculature, to mutate certain amino acids to reduce the immunogenicity of this new drug, and to determine whether the drug was able to effectively reduce aggressive human brain tumors in a rat xenograft model via a novel hollow fiber (HF) catheter delivery system. Methods A new bispecific ligand-directed toxin (BLT) was created in which 2 human cytokines—epidermal growth factor ([EGF], targeting overexpressed EGF receptor) and amino acid terminal fragment ([ATF], targeting urokinase plasminogen activator receptor)—were cloned onto the same single-chain molecule with truncated Pseudomonas exotoxin with a terminal lysyl-aspartyl-glutamyl-leucine (KDEL) sequence. Site-specific mutagenesis was used to mutate amino acids in 7 key epitopic toxin regions that dictate the B cell generation of neutralizing antitoxin antibodies to deimmunize the drug, now called “EGFATFKDEL 7mut.” Bioassays were used to determine whether mutation reduced the drug's potency, and enzyme-linked immunosorbent assay studies were performed to determine whether antitoxin antibodies were decreased. Aggressive brain tumors were intracranially established in nude rats by using human U87 glioma genetically marked with a firefly luciferase reporter gene (U87-luc), and the rats were stereotactically treated with 2 intracranial injections of deimmunized EGFATFKDEL via convection-enhanced delivery (CED). Drug was administered through a novel HF catheter to reduce drug backflow upon delivery. Results In vitro, EGFATFKDEL 7mut selectively killed the human glioblastoma cell line U87-luc as well as cultured human endothelial cells in the form of the human umbilical vein endothelial cells. Deimmunization did not reduce drug activity. In vivo, when rats with brain tumors were intracranially treated with drug via CED and a novel HF catheter to reduce backflow, there were significant tumor reductions in 2 experiments (p < 0.01). Some rats survived with a tumor-free status until 130 days post–tumor inoculation. An irrelevant BLT control did not protect establishing specificity. The maximal tolerated dose of EGFATFKDEL 7mut was established at 2 μg/injection or 8.0 μg/kg, and data indicated that this dose was nontoxic. Antitoxin antibodies were reduced by at least 90%. Conclusions First, data indicated that the BLT framework is effective for simultaneously targeting glioma and its neovasculature. Second, in the rodent CED studies, newly developed HF catheters that limit backflow are effective for drug delivery. Third, by mutating critical amino acids, the authors reduced the threat of the interference of neutralizing antibodies that are generated against the drug. The authors' experiments addressed some of the most urgent limitations in the targeted toxin field.


Author(s):  
F. Weinhardt ◽  
S. Hoyer ◽  
H. Berlet ◽  
J. Hamer
Keyword(s):  

1996 ◽  
Vol 101 (1-2) ◽  
pp. 45-54 ◽  
Author(s):  
J.O. Pickles ◽  
D.A. Billieux-Hawkins ◽  
G.W. Rouse

2016 ◽  
Vol 283 (1833) ◽  
pp. 20160656 ◽  
Author(s):  
William D. Brown ◽  
Katherine L. Barry

Models of the evolution of sexual cannibalism argue that males may offset the cost of cannibalism if components of the male body are directly allocated to the eggs that they fertilize. We tested this idea in the praying mantid Tenodera sinensis . Males and females were fed differently radiolabelled crickets and allowed to mate. Half of the pairs progressed to sexual cannibalism and we prevented cannibalism in the other half. We assess the relative allocation of both male-derived somatic materials and ejaculate materials into the eggs and soma of the female. Our results show that male somatic investment contributes to production of offspring. The eggs and reproductive tissues of cannibalistic females contained significantly more male-derived amino acids than those of non-cannibalistic females, and there was an increase in the number of eggs produced subsequent to sexual cannibalism. Sexual cannibalism thus increases male material investment in offspring. We also show that males provide substantial investment via the ejaculate, with males passing about 25% of their radiolabelled amino acids to females via the ejaculate even in the absence of cannibalism.


Sign in / Sign up

Export Citation Format

Share Document