Evaluation of a bispecific biological drug designed to simultaneously target glioblastoma and its neovasculature in the brain

2011 ◽  
Vol 114 (6) ◽  
pp. 1662-1671 ◽  
Author(s):  
Seunguk Oh ◽  
Alexander K. Tsai ◽  
John R. Ohlfest ◽  
Angela Panoskaltsis-Mortari ◽  
Daniel A. Vallera

Object The authors of this study aimed to genetically design a bispecific targeted toxin that would simultaneously target overexpressed markers on glioma as well as the tumor vasculature, to mutate certain amino acids to reduce the immunogenicity of this new drug, and to determine whether the drug was able to effectively reduce aggressive human brain tumors in a rat xenograft model via a novel hollow fiber (HF) catheter delivery system. Methods A new bispecific ligand-directed toxin (BLT) was created in which 2 human cytokines—epidermal growth factor ([EGF], targeting overexpressed EGF receptor) and amino acid terminal fragment ([ATF], targeting urokinase plasminogen activator receptor)—were cloned onto the same single-chain molecule with truncated Pseudomonas exotoxin with a terminal lysyl-aspartyl-glutamyl-leucine (KDEL) sequence. Site-specific mutagenesis was used to mutate amino acids in 7 key epitopic toxin regions that dictate the B cell generation of neutralizing antitoxin antibodies to deimmunize the drug, now called “EGFATFKDEL 7mut.” Bioassays were used to determine whether mutation reduced the drug's potency, and enzyme-linked immunosorbent assay studies were performed to determine whether antitoxin antibodies were decreased. Aggressive brain tumors were intracranially established in nude rats by using human U87 glioma genetically marked with a firefly luciferase reporter gene (U87-luc), and the rats were stereotactically treated with 2 intracranial injections of deimmunized EGFATFKDEL via convection-enhanced delivery (CED). Drug was administered through a novel HF catheter to reduce drug backflow upon delivery. Results In vitro, EGFATFKDEL 7mut selectively killed the human glioblastoma cell line U87-luc as well as cultured human endothelial cells in the form of the human umbilical vein endothelial cells. Deimmunization did not reduce drug activity. In vivo, when rats with brain tumors were intracranially treated with drug via CED and a novel HF catheter to reduce backflow, there were significant tumor reductions in 2 experiments (p < 0.01). Some rats survived with a tumor-free status until 130 days post–tumor inoculation. An irrelevant BLT control did not protect establishing specificity. The maximal tolerated dose of EGFATFKDEL 7mut was established at 2 μg/injection or 8.0 μg/kg, and data indicated that this dose was nontoxic. Antitoxin antibodies were reduced by at least 90%. Conclusions First, data indicated that the BLT framework is effective for simultaneously targeting glioma and its neovasculature. Second, in the rodent CED studies, newly developed HF catheters that limit backflow are effective for drug delivery. Third, by mutating critical amino acids, the authors reduced the threat of the interference of neutralizing antibodies that are generated against the drug. The authors' experiments addressed some of the most urgent limitations in the targeted toxin field.

1987 ◽  
Author(s):  
H R Lijnen ◽  
L Nelles ◽  
G Lemmens ◽  
D Collen ◽  
W E Holmes

A hybrid human cDNA was constructed by ligation of a cDNA fragment of tissue-type plasminogen activator (t-PA), encoding 5∲-untranslated, the pre-pro region and amino acids Ser 1 through Thr 263, with a cDNA fragment of urokinase-type plasminogen activator (u-PA), encoding amino acids Leu 144 through Leu 411. The hybrid cDNA was expressed in Chinese Hamster Ovary Cells and the translation product purified from the conditioned cell culture media in the presence of aprotinin. On SDS-gel electrophoresis under reducing conditions, the protein migrated as a single band with approximate Mr 70,000 and on immunoblot-ting, it reacted with rabbit antisera raised against human t-PA and against human u-PA. The urokinase-like amidolytic activity (S-2444) of the protein’ was 320 IU/mg but increased to 43,000 IU/mg after treatment with plasmin, which resulted in conversion of the single chain molecule (t-PA/scu-PA) to a two-chain molecule (t-PA/tcu-PA).Both proteins activated plasminogen directly with Michaelis constant (Km) 1.5 μM and catalytic rate constant (km2) 0.0058 s-1 for t-PA/scu-PA and with K = 80 μM and = 5.6 s-1 for t-PA/tcu-PA. CBNr-digested fibrinogen stimulated the activation rate of plasminogen with t-PA/tcu-PA (increase of k2/Km of 88-fold).Both t-PA/scu-PA and t-PA/tcu-PA bound specifically to fibrin albeit ^np$re weakly than t-PA. In an in vitro system composed of a human I-fibrin labeled plasma clot immersed in human plasma, the t-PA/tcu-PA hybrid has a higher fibrin-selectivity of clot lysis than tcu-PA, but this difference was not evident between t-PA/scu-PA and scu-PA. The stability of the t-PA/scu-PA hybrid in plasma was much higher than that of the t-PA/tcu-PA hybrid, a difference comparable to that between scu-PA and tcu-PA.It is concluded that these t-PA/u-PA hybrid proteins combine fibrin-affinity of t-PA with the enzymatic properties of u-PA (either scu-PA or tcu-PA), resulting in improved fibrin-mediated plasminogen activation.


1987 ◽  
Author(s):  
R W Colman ◽  
A Gewirtz ◽  
D L Wang ◽  
M M Huh ◽  
B P Schick ◽  
...  

Coagulation factor V (FV), is a single chain, multifunctional glycoprotein of Mr 350,000 which interacts with a variety of hemostatic proteins such as factor Xa, prothrombin, thrombin and protein C, on the surface of platelets and vascular endothelial cells. FV serves as both a cofactor and substrate in the generation of thrombin and plays a critical regulatory role in both physiologic hemostasis and pathologic thrombosis. The biosynthesis of FV and its subsequent expression are therefore expected to be precisely controlled and may differ in the three sites of synthesis - hepatocytes, endothelial cells, and megakaryocytes (MK). We have previously demonstrated that each guinea pig MK contains 500 times as much FV as in a platelet, as quantified by a competitive enzyme-linked-immunosorbent assay and expresses FV by cytoimmunofluorescence. De novo biosynthesis was demonstrated by incorporation of S-methionine into FV purified on a immunoaffinity column. The purified MK protein exhibited both FV coagulant activity and antigenicity. However, MK FV was more slowly activated by thrombin, more stable in the absence of Ca and exhibited a slightly higher M of 380,000 compared to plasma FV. Similar studies have documented biosynthesis in human MK. In addition, all morphologically recognizable MK enriched by elutriation from human bone marrow contained FV as documented by both monospecific polyclonal and monoclonal antibodies (MAb) to FV. All these cells bound FV since a murine MAb reacting with the light chain of FV (B38) labeled all cells. In contrast, 68% of cells synthesized FV since B10, a MAb to the activation peptide recognizing FV but not FVa, labeled this fraction. To determine whether immature nonnorphologically recognizable MK expressed FV, we identified these cells with an antiserum to human platelet glycoproteins and then probed them with B38. Seventy percent (70%) of such small cells expressed FV. In contrast, no small cells in MK colonies cloned in FV deficient medium expressed FV while only 40% of such colonies contained cells which expressed FV.To further probe the regulation of FV in MK we attempted to correlate the synthesis of FV as probed by MAb B10 with geometric mean cell diameter, stage and ploidy. No significant correlation of FV with any of these indicators of MK maturation. In contrast, preliminary studies suggest that low doses of tetradecanoyl phorbol acetate augment both the number of MK containing FV and the level of FV expressed by individual cells. Thus, FV synthesis may be regulated independent of size, stage, or ploidy and protein kinase C may play a role.To further define the molecular nature of FV in MK we found that purified FV was converted from a monomer to high Mr multimers by an enzyme derived from MK. These multimers resulting from covalent crosslinking since they were stable to SDS, 100° C and reducing agents. The responsible enzyme appeared to be MK FXIIIa since it required C, was inhibited by agents which react with the active site thiol group and was blocked by pseudoamine donor substrates such as putrescine. In addition, FXIIIa was directly demonstrated in guinea pig MK by a specific activity stain. Other investigators have established that FV became irreversibly associated with platelet cytoskeletons after exposure to thrombin. tested whether FXIIIa might mediate this association by performing ligand blotting of platelet membrane proteins using 125I-FV(FV*). Only actin of all the membrane proteins was detected by radioautography. The binding of FV* to the cytoskeleton was dependent in the presence of Ca and FXIIIa. In purified systems crosslinked complexes containing FV* or radiolabeled actin were detected in separate experiments. In whole platelets, the formation of the heteropolymer, after thrombin stimulation, was inhibited by antibodies to FXIII a chain, FV activation peptide (B10) or actin. Endogenous platelet FV was also dependent on FXIII for incorporation into the platelet cytoskeleton after thrombin stimulation. When thrombin-treated FV was crosslinked to actin only the activation peptide (150 kDa) was crosslinked. The light chain or heavy chain of FVa were not involved. Thus FXIIIa play an important role in the binding of FV in platelets to the cytoskeleton during activation and secretion.Further studies of FV in megakaryocytes are necessary to define the regulation of biosynthesis and the control of expression which dictate its critical role in hemostasis and thrombosis.


2021 ◽  
Vol 8 ◽  
Author(s):  
Minghu Zhao ◽  
Yuanyuan Yang ◽  
Jingchao Li ◽  
Min Lu ◽  
Yu Wu

Background: Long non-coding RNAs (lncRNAs) have been implicated in the pathogenesis of atherosclerosis. LncRNA OIP5 antisense RNA 1 (OIP5-AS1) has been found to be associated with the development of atherosclerosis. In this study, we further investigated the molecular basis of OIP5-AS1 in atherosclerosis pathogenesis.Methods: Oxidative low-density lipoprotein (ox-LDL) was used to treat human umbilical vein endothelial cells (HUVECs). The levels of OIP5-AS1, miR-135a-5p, and Krüppel-like factor 5 (KLF5) were detected by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Cell viability, migration, and apoptosis were evaluated using the Cell Counting Kit-8 (CCK-8), Transwell, and flow cytometry, respectively. The levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and malondialdehyde (MDA) were determined with enzyme-linked immunosorbent assay (ELISA). Targeted interactions among OIP5-AS1, miR-135a-5p, and KLF5 were confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Animal studies were performed to assess the role of OIP5-AS1 in atherosclerosis progression in vivo.Results: Our data showed the significant upregulation of OIP5-AS1 in atherosclerosis serum and ox-LDL-stimulated HUVECs. The silencing of OIP5-AS1 protected against ox-LDL-triggered cytotoxicity in HUVECs and diminished lipids secretion in ApoE−/− mice. Moreover, OIP5-AS1 functioned as a molecular sponge of miR-135a-5p, and miR-135a-5p was a functional mediator of OIP5-AS1 in regulating ox-LDL-induced HUVEC injury. KLF5 was a direct target of miR-135a-5p, and the increased expression of miR-135a-5p alleviated ox-LDL-induced cytotoxicity by downregulating KLF5. Furthermore, OIP5-AS1 influenced KLF5 expression through sponging miR-135a-5p.Conclusion: The current work identified that the silencing of OIP5-AS1 protected against ox-LDL-triggered cytotoxicity in HUVECs at least in part by influencing KLF5 expression via acting as a miR-135a-5p sponge.


1989 ◽  
Vol 62 (02) ◽  
pp. 699-703 ◽  
Author(s):  
Rob J Aerts ◽  
Karin Gillis ◽  
Hans Pannekoek

SummaryIt has recently been shown that the fibrinolytic components plasminogen and tissue-type plasminogen activator (t-PA) both bind to cultured human umbilical vein endothelial cells (HUVEC). After cleavage of t-PA by plasmin, “single-chain” t-PA (sct-PA) is converted into “two-chain” t-PA (tct-PA), which differs from the former in a number of respects. We compared binding of sct-PA and tct-PA to the surface of HUVEC. Removal of t-PA bound to HUVEC by a mild treatment with acid and a subsequent quantification of eluted t-PA both by activity- and immunoradiometric assays revealed that, at concentrations between 10 and 500 nM, HUVEC bind about 3-4 times more sct-PA than tct-PA. At these concentrations, both sct-PA and tct-PA remain active when bound to HUVEC. Mutual competition experiments showed that sct-PA and tct-PA can virtually fully inhibit binding of each other to HUVEC, but that an about twofold higher concentration of tct-PA is required to prevent halfmaximal binding of sct-PA than visa versa. These results demonstrate that sct-PA and tct-PA bind with different affinities to the same binding sites on HUVEC.


1995 ◽  
Vol 74 (04) ◽  
pp. 1045-1049 ◽  
Author(s):  
P Butthep ◽  
A Bunyaratvej ◽  
Y Funahara ◽  
H Kitaguchi ◽  
S Fucharoen ◽  
...  

SummaryAn increased level of plasma thrombomodulin (TM) in α- and β- thalassaemia was demonstrated using an enzyme-linked immunosorbent assay (ELISA). Nonsplenectomized patients with β-thalassaemia/ haemoglobin E (BE) had higher levels of TM than splenectomized cases (BE-S). Patients with leg ulcers (BE-LU) were found to have the highest increase in TM level. Appearance of larger platelets in all types of thalassaemic blood was observed indicating an increase in the number of younger platelets. These data indicate that injury of vascular endothelial cells is present in thalassaemic patients.


1992 ◽  
Vol 67 (01) ◽  
pp. 095-100 ◽  
Author(s):  
Paul J Declerck ◽  
Leen Van Keer ◽  
Maria Verstreken ◽  
Désiré Collen

SummaryAn enzyme-linked immunosorbent assay (ELISA) for quantitation of natural and recombinant plasminogen activators containing the serine protease domain (B-chain) of urokinase-type plasminogen activator (u-PA) was developed, based on two murine monoclonal antibodies, MA-4D1E8 and MA-2L3, raised against u-PA and reacting with non-overlapping epitopes in the B-chain. MA-4D1E8 was coated on microtiter plates and bound antigen was quantitated with MA-2L3 conjugated with horseradish peroxidase. The intra-assay, inter-assay and inter-dilution coefficients of variation of the assay were 6%, 15% and 9%, respectively. Using recombinant single-chain u-PA (rscu-PA) as a standard, the u-PA-related antigen level in normal human plasma was 1.4 ± 0.6 ng/ml (mean ± SD, n = 27).The ELISA recognized the following compounds with comparable sensitivity: intact scu-PA (amino acids, AA, 1 to 411), scu-PA-32k (AA 144 to 411), a truncated (thrombin-derived) scu-PA comprising A A 157 to 411, and chimeric t-PA/u-PA molecules including t-PA(AA1-263)/scu-PA(AA144-411), t-PA(AA1-274)/scu-PA(AA138-411) and t-PA(AA87-274)/scu-PA(AA138-411). Conversion of single-chain to two-chain forms of u-PA or inhibition of active two-chain forms with plasminogen activator inhibitor-1 or with the active site serine inhibitor phenyl-methyl-sulfonyl fluoride, did not alter the reactivity in the assay. In contrast, inactivation with α2-antiplasmin or with the active site histidine inhibitor Glu-Gly-Arg-CH2Cl resulted in a 3- to 5-fold reduction of the reactivity. When purified scu-PA-32k was added to pooled normal human plasma at final concentrations ranging from 20 to 1,000 ng/ml, recoveries in the ELISA were between 84 and 110%.The assay was successfully applied for the quantitation of pharmacological levels of scu-PA and t-PA(AA87_274)/scu-PA(AA138-411) in plasma during experimental thrombolysis in baboons.Thus the present ELISA, which is specifically dependent on the presence of the serine protease part of u-PA, is useful for measurement of a wide variety of variants and chimeras of u-PA which are presently being developed for improved thrombolytic therapy.


1992 ◽  
Vol 67 (02) ◽  
pp. 219-225 ◽  
Author(s):  
Walter A Wuillemin ◽  
Miha Furlan ◽  
Hans Stricker ◽  
Bernhard Lämmle

SummaryThe plasma of a healthy woman was found to contain half normal factor XII (FXII) antigen level (0.46 U/ml) without any FXII clotting activity (<0.01 U/ml). The variant FXII in this plasma, denoted as FXII Locarno, was partially characterized by immunological and functional studies on the proposita’s plasma. FXII Locarno is a single chain molecule with the same size (M r = 80 kDa) as normal FXII. Isoelectric focusing suggested an excess of negative charge in the variant FXII as compared to normal FXII. In contrast to FXII in normal plasma, FXII Locarno was not proteolytically cleaved upon prolonged incubation of proposita’s plasma with dextran sulfate. Adsorption to kaolin was similar for both, abnormal and normal FXII. Incubation of the proposita’s plasma with dextran sulfate and exogenous plasma kallikrein showed normal cleavage of FXII Locarno outside of the tentative disulfide loop Cys340-Cys467, but only partial cleavage within this disulfide loop. Furthermore, plasma kallikrein-cleaved abnormal FXII showed neither amidolytic activity nor proteolytic activity against factor XI and plasma prekallikrein.These results suggest a structural alteration of FXII Locarno, affecting the plasma kallikrein cleavage site Arg353-Val354 and thus formation of activated FXII (a-FXIIa).


Author(s):  
Guang Li ◽  
Bo Wang ◽  
Xiangchao Ding ◽  
Xinghua Zhang ◽  
Jian Tang ◽  
...  

AbstractExtracellular vesicles (EVs) can be used for intercellular communication by facilitating the transfer of miRNAs from one cell to a recipient cell. MicroRNA (miR)-210-3p is released into the blood during sepsis, inducing cytokine production and promoting leukocyte migration. Thus, the current study aimed to elucidate the role of plasma EVs in delivering miR-210-3p in sepsis-induced acute lung injury (ALI). Plasma EVs were isolated from septic patients, after which the expression of various inflammatory factors was measured using enzyme-linked immunosorbent assay. Cell viability and apoptosis were measured via cell counting kit-8 and flow cytometry. Transendothelial resistance and fluorescein isothiocyanate fluorescence were used to measure endothelial cell permeability. Matrigel was used to examine the tubulogenesis of endothelial cells. The targeting relationship between miR-210-3p and ATG7 was assessed by dual-luciferase reporter assays. The expression of ATG7 and autophagy-related genes was determined to examine autophagic activation. A sepsis mouse model was established by cecal ligation and puncture (CLP)-induced surgery. The level of miR-210-3p was highly enriched in septic EVs. MiR-210-3p enhanced THP-1 macrophage inflammation, BEAS-2B cell apoptosis, and HLMVEC permeability while inhibiting angiogenesis and cellular activity. MiR-210-3p overexpression reduced ATG7 and LC3II/LC3I expression and increased P62 expression. Improvements in vascular density and autophagosome formation, increased ATG7 expression, and changes in the ratio of LC3II/LC3I were detected, as well as reduced P62 expression, in adenovirus-anti-miR-210-3p treated mice after CLP injury. Taken together, the key findings of the current study demonstrate that plasma EVs carrying miR-210-3p target ATG7 to regulate autophagy and inflammatory activation in a sepsis-induced ALI model.


Author(s):  
Zizhen Si ◽  
Lei Yu ◽  
Haoyu Jing ◽  
Lun Wu ◽  
Xidi Wang

Abstract Background Long non-coding RNAs (lncRNA) are reported to influence colorectal cancer (CRC) progression. Currently, the functions of the lncRNA ZNF561 antisense RNA 1 (ZNF561-AS1) in CRC are unknown. Methods ZNF561-AS1 and SRSF6 expression in CRC patient samples and CRC cell lines was evaluated through TCGA database analysis, western blot along with real-time PCR. SRSF6 expression in CRC cells was also examined upon ZNF561-AS1 depletion or overexpression. Interaction between miR-26a-3p, miR-128-5p, ZNF561-AS1, and SRSF6 was examined by dual luciferase reporter assay, as well as RNA binding protein immunoprecipitation (RIP) assay. Small interfering RNA (siRNA) mediated knockdown experiments were performed to assess the role of ZNF561-AS1 and SRSF6 in the proliferative actives and apoptosis rate of CRC cells. A mouse xenograft model was employed to assess tumor growth upon ZNF561-AS1 knockdown and SRSF6 rescue. Results We find that ZNF561-AS1 and SRSF6 were upregulated in CRC patient tissues. ZNF561-AS1 expression was reduced in tissues from treated CRC patients but upregulated in CRC tissues from relapsed patients. SRSF6 expression was suppressed and enhanced by ZNF561-AS1 depletion and overexpression, respectively. Mechanistically, ZNF561-AS1 regulated SRSF6 expression by sponging miR-26a-3p and miR-128-5p. ZNF561-AS1-miR-26a-3p/miR-128-5p-SRSF6 axis was required for CRC proliferation and survival. ZNF561-AS1 knockdown suppressed CRC cell proliferation and triggered apoptosis. ZNF561-AS1 depletion suppressed the growth of tumors in a model of a nude mouse xenograft. Similar observations were made upon SRSF6 depletion. SRSF6 overexpression reversed the inhibitory activities of ZNF561-AS1 in vivo, as well as in vitro. Conclusion In summary, we find that ZNF561-AS1 promotes CRC progression via the miR-26a-3p/miR-128-5p-SRSF6 axis. This study reveals new perspectives into the role of ZNF561-AS1 in CRC.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Jie Yun ◽  
Jinyu Ren ◽  
Yufei Liu ◽  
Lijuan Dai ◽  
Liqun Song ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been considered as pivotal biomarkers in Diabetic nephropathy (DN). CircRNA ARP2 actin-related protein 2 homolog (circ-ACTR2) could promote the HG-induced cell injury in DN. However, how circ-ACTR2 acts in DN is still unclear. This study aimed to explore the molecular mechanism of circ-ACTR2 in DN progression, intending to provide support for the diagnostic and therapeutic potentials of circ-ACTR2 in DN. Methods RNA expression analysis was conducted by the quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cell growth was measured via Cell Counting Kit-8 and EdU assays. Inflammatory response was assessed by Enzyme-linked immunosorbent assay. The protein detection was performed via western blot. Oxidative stress was evaluated by the commercial kits. The molecular interaction was affirmed through dual-luciferase reporter and RNA immunoprecipitation assays. Results Circ-ACTR2 level was upregulated in DN samples and high glucose (HG)-treated human renal mesangial cells (HRMCs). Silencing the circ-ACTR2 expression partly abolished the HG-induced cell proliferation, inflammation and extracellular matrix accumulation and oxidative stress in HRMCs. Circ-ACTR2 was confirmed as a sponge for miR-205-5p. Circ-ACTR2 regulated the effects of HG on HRMCs by targeting miR-205-5p. MiR-205-5p directly targeted high-mobility group AT-hook 2 (HMGA2), and HMGA2 downregulation also protected against cell injury in HG-treated HRMCs. HG-mediated cell dysfunction was repressed by miR-205-5p/HMGA2 axis. Moreover, circ-ACTR2 increased the expression of HMGA2 through the sponge effect on miR-205-5p in HG-treated HRMCs. Conclusion All data have manifested that circ-ACTR2 contributed to the HG-induced DN progression in HRMCs by the mediation of miR-205-5p/HMGA2 axis.


Sign in / Sign up

Export Citation Format

Share Document