A Comparison Study for Different Settings of Crossover and Mutation Rates Using WMN-GA Simulation System

Author(s):  
Evjola Spaho ◽  
Tetsuya Oda ◽  
Admir Barolli ◽  
Fatos Xhafa ◽  
Leonard Barolli ◽  
...  
VLSI Design ◽  
1994 ◽  
Vol 2 (2) ◽  
pp. 105-116
Author(s):  
S. Muddappa ◽  
R. Z. Makki ◽  
Z. Michalewicz ◽  
S. Isukapalli

In this paper we present a new tool for the encoding of multi-level finite state machines based on the concept of evolution programming. Evolution programs are stochastic adaptive algorithms, based on the paradigm of genetic algorithms whose search methods model some natural phenomenon: genetic inheritance and Darwinian strife for survival. Crossover and mutation rates were tailored to the state assignment problem experimentally. We present results over a wide range of MCNC benchmarks which demonstrate the effectiveness of the new tool. The results show that evolution programs can be effectively applied to state assignment.


Information ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 390 ◽  
Author(s):  
Ahmad Hassanat ◽  
Khalid Almohammadi ◽  
Esra’a Alkafaween ◽  
Eman Abunawas ◽  
Awni Hammouri ◽  
...  

Genetic algorithm (GA) is an artificial intelligence search method that uses the process of evolution and natural selection theory and is under the umbrella of evolutionary computing algorithm. It is an efficient tool for solving optimization problems. Integration among (GA) parameters is vital for successful (GA) search. Such parameters include mutation and crossover rates in addition to population that are important issues in (GA). However, each operator of GA has a special and different influence. The impact of these factors is influenced by their probabilities; it is difficult to predefine specific ratios for each parameter, particularly, mutation and crossover operators. This paper reviews various methods for choosing mutation and crossover ratios in GAs. Next, we define new deterministic control approaches for crossover and mutation rates, namely Dynamic Decreasing of high mutation ratio/dynamic increasing of low crossover ratio (DHM/ILC), and Dynamic Increasing of Low Mutation/Dynamic Decreasing of High Crossover (ILM/DHC). The dynamic nature of the proposed methods allows the ratios of both crossover and mutation operators to be changed linearly during the search progress, where (DHM/ILC) starts with 100% ratio for mutations, and 0% for crossovers. Both mutation and crossover ratios start to decrease and increase, respectively. By the end of the search process, the ratios will be 0% for mutations and 100% for crossovers. (ILM/DHC) worked the same but the other way around. The proposed approach was compared with two parameters tuning methods (predefined), namely fifty-fifty crossover/mutation ratios, and the most common approach that uses static ratios such as (0.03) mutation rates and (0.9) crossover rates. The experiments were conducted on ten Traveling Salesman Problems (TSP). The experiments showed the effectiveness of the proposed (DHM/ILC) when dealing with small population size, while the proposed (ILM/DHC) was found to be more effective when using large population size. In fact, both proposed dynamic methods outperformed the predefined methods compared in most cases tested.


2011 ◽  
Vol 219-220 ◽  
pp. 1578-1583
Author(s):  
Shuang Zhang ◽  
Qing He Hu ◽  
Xing Wei Wang

The paper studies transformer optimal design, establishes optimal transformer model based on total owning cost. It adopts penalty function to process objective function with weighted coefficients. For prematurity and low speed of convergence of Simple Genetic Algorithm, improved adaptive genetic algorithm is adopted. It increases crossover and mutation rates, and improves fitness function. It is adopted to search for minimum total owning cost of transformer. The result shows that the algorithm performs well, increases converging speed and betters solution.


Sign in / Sign up

Export Citation Format

Share Document