Lung Segmentation for CT Images Based on Mean Shift and Region Growing

Author(s):  
Huang Zhanpeng ◽  
Yi Faling ◽  
Zhao Jie
2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Zhenghao Shi ◽  
Jiejue Ma ◽  
Minghua Zhao ◽  
Yonghong Liu ◽  
Yaning Feng ◽  
...  

Accurate lung segmentation is an essential step in developing a computer-aided lung disease diagnosis system. However, because of the high variability of computerized tomography (CT) images, it remains a difficult task to accurately segment lung tissue in CT slices using a simple strategy. Motived by the aforementioned, a novel CT lung segmentation method based on the integration of multiple strategies was proposed in this paper. Firstly, in order to avoid noise, the input CT slice was smoothed using the guided filter. Then, the smoothed slice was transformed into a binary image using an optimized threshold. Next, a region growing strategy was employed to extract thorax regions. Then, lung regions were segmented from the thorax regions using a seed-based random walk algorithm. The segmented lung contour was then smoothed and corrected with a curvature-based correction method on each axis slice. Finally, with the lung masks, the lung region was automatically segmented from a CT slice. The proposed method was validated on a CT database consisting of 23 scans, including a number of 883 2D slices (the number of slices per scan is 38 slices), by comparing it to the commonly used lung segmentation method. Experimental results show that the proposed method accurately segmented lung regions in CT slices.


2021 ◽  
Vol 36 (9) ◽  
pp. 1294-1304
Author(s):  
Li-juan ZHANG ◽  
◽  
Run ZHANG ◽  
Dong-ming LI ◽  
Yang LI ◽  
...  

2018 ◽  
Vol 7 (2.6) ◽  
pp. 306
Author(s):  
Aravinda H.L ◽  
M.V Sudhamani

The major reasons for liver carcinoma are cirrhosis and hepatitis.  In order to  identify carcinoma in the liver abdominal CT images are used. From abdominal CT images, segmentation of liver portion using adaptive region growing, tumor segmentation from extracted liver using Simple Linear Iterative Clustering is already implemented. In this paper, classification of tumors as benign or malignant is accomplished using Rough-set classifier based on texture feature extracted using Average Correction Higher Order Local Autocorrelation Coefficients and Legendre moments. Classification accuracy achieved in proposed scheme is 90%. The results obtained are promising and have been compared with existing methods.


The aim of the project is to develop a methodology for automatic segmentation of multiple tumor from PET/CT images. Image pre-processing methods such as Contrast Limited Adaptive Histogram Equalization (CLAHE), image sharpening and Wiener filtering were performed to remove the artifacts due to contrast variations and noise. The image was segmented using K-means, Threshold segmentation, watershed segmentation, FCM clustering Segmentation, Mean shift Clustering Segmentation, Graph Cut Segmentation. Evaluation was made for the segmentation against the Ground Truth. Various Features was selected and extracted. Classification was made using SVM classifier and KNN classifier to classify the tumor as benign or malignant. The proposed method was carried out using PET/CT images of lung cancer patients and implemented using MATLAB.


2018 ◽  
Vol 8 (3) ◽  
pp. 485-493 ◽  
Author(s):  
Shouren Lan ◽  
Xin Liu ◽  
Lisheng Wang ◽  
Chaoyi Cui

Author(s):  
Cheng Chen ◽  
Ruoxiu Xiao ◽  
Tao Zhang ◽  
Yuanyuan Lu ◽  
Xiaoyu Guo ◽  
...  

Author(s):  
Satya Praksh Sahu ◽  
Bhawna Kamble

Lung segmentation is the initial step for detection and diagnosis for lung-related abnormalities and disease. In CAD system for lung cancer, this step traces the boundary for the pulmonary region from thorax in CT images. It decreases the overhead for a further step in CAD system by reducing the space for finding the ROIs. The major issue and challenging task for the segmentation is the inclusion of juxtapleural nodules in the segmented lungs. The chapter attempts 3D lung segmentation of CT images using active contour and morphological operations. The major steps in the proposed approach contain: preprocessing through various techniques, Otsu's thresholding for the binarizing the image; morphological operations are applied for elimination of undesired region and, finally, active contour for the segmentation of the lungs in 3D. For experiment, 10 subjects are taken from the public dataset of LIDC-IDRI. The proposed method achieved accuracies 0.979 Jaccard's similarity index value, 0.989 Dice similarity coefficient, and 0.073 volume overlap error when compared to ground truth.


2014 ◽  
Vol 33 (1) ◽  
pp. 13 ◽  
Author(s):  
Mehdi Alilou ◽  
Vassili Kovalev ◽  
Eduard Snezhko ◽  
Vahid Taimouri

Solitary pulmonary nodules may indicate an early stage of lung cancer. Hence, the early detection of nodules is the most efficient way for saving the lives of patients. The aim of this paper is to present a comprehensive Computer Aided Diagnosis (CADx) framework for detection of the lung nodules in computed tomography images. The four major components of the developed framework are lung segmentation, identification of candidate nodules, classification and visualization. The process starts with segmentation of lung regions from the thorax. Then, inside the segmented lung regions, candidate nodules are identified using an approach based on multiple thresholds followed by morphological opening and 3D region growing algorithm. Finally, a combination of a rule-based procedure and support vector machine classifier (SVM) is utilized to classify the candidate nodules. The proposed CADx method was validated on CT images of 60 patients, containing the total of 211 nodules, selected from the publicly available Lung Image Database Consortium (LIDC) image dataset. Comparing to the other state of the art methods, the proposed framework demonstrated acceptable detection performance (Sensitivity: 0.80; Fp/Scan: 3.9). Furthermore, we visualize a range of anatomical structures including the 3D lung structure and the segmented nodules along with the Maximum Intensity Projection (MIP) volume rendering method that will enable the radiologists to accurately and easily estimate the distance between the lung structures and the nodules which are frequently difficult at best to recognize from CT images.


Sign in / Sign up

Export Citation Format

Share Document