Construction of Hamiltonian Structures for Dynamical Systems from Scratch

Author(s):  
Sergio A. Hojman
2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Xiaoming Zhang ◽  
Zhenbang Cao ◽  
Jianhua Xie ◽  
Denghui Li ◽  
Celso Grebogi

In this work, we study a class of dissipative, nonsmooth [Formula: see text] degree-of-freedom dynamical systems. As the dissipation is assumed to be proportional to the momentum, the dynamics in such systems is conformally symplectic, allowing us to use some of the Hamiltonian structure. We initially show that there exists an integral invariant of the Poincaré–Cartan type in such systems. Then, we prove the existence of a generalized Liouville Formula for conformally symplectic systems with rigid constraints using the integral invariant. A two degree-of-freedom system is analyzed to support the relevance of our results.


2016 ◽  
Vol 26 (13) ◽  
pp. 1650215 ◽  
Author(s):  
Oğul Esen ◽  
Anindya Ghose Choudhury ◽  
Partha Guha

We study Hamiltonian structures of dynamical systems with three degrees of freedom which are known for their chaotic properties, namely Lü, modified Lü, Chen, [Formula: see text] and Qi systems. We show that all these flows admit bi-Hamiltonian structures depending on the values of their parameters.


2018 ◽  
Vol 73 (4) ◽  
pp. 323-330 ◽  
Author(s):  
Rehana Naz ◽  
Imran Naeem

AbstractThe non-standard Hamiltonian system, also referred to as a partial Hamiltonian system in the literature, of the form ${\dot q^i} = \frac{{\partial H}}{{\partial {p_i}}},{\text{ }}{\dot p^i} = - \frac{{\partial H}}{{\partial {q_i}}} + {\Gamma ^i}(t,{\text{ }}{q^i},{\text{ }}{p_i})$ appears widely in economics, physics, mechanics, and other fields. The non-standard (partial) Hamiltonian systems arise from physical Hamiltonian structures as well as from artificial Hamiltonian structures. We introduce the term ‘artificial Hamiltonian’ for the Hamiltonian of a model having no physical structure. We provide here explicitly the notion of an artificial Hamiltonian for dynamical systems of ordinary differential equations (ODEs). Also, we show that every system of second-order ODEs can be expressed as a non-standard (partial) Hamiltonian system of first-order ODEs by introducing an artificial Hamiltonian. This notion of an artificial Hamiltonian gives a new way to solve dynamical systems of first-order ODEs and systems of second-order ODEs that can be expressed as a non-standard (partial) Hamiltonian system by using the known techniques applicable to the non-standard Hamiltonian systems. We employ the proposed notion to solve dynamical systems of first-order ODEs arising in epidemics.


Sign in / Sign up

Export Citation Format

Share Document