Lyapunov Exponents and Information Dimensions of Multi-Degree-of-Freedom Systems Under Deterministic and Stationary Random Excitations

Author(s):  
C. W. S. To ◽  
M. L. Liu
2006 ◽  
Vol 16 (06) ◽  
pp. 1777-1793 ◽  
Author(s):  
CHRIS ANTONOPOULOS ◽  
TASSOS BOUNTIS ◽  
CHARALAMPOS SKOKOS

We investigate the connection between local and global dynamics of two N-degree of freedom Hamiltonian systems with different origins describing one-dimensional nonlinear lattices: The Fermi–Pasta–Ulam (FPU) model and a discretized version of the nonlinear Schrödinger equation related to Bose–Einstein Condensation (BEC). We study solutions starting in the vicinity of simple periodic orbits (SPOs) representing in-phase (IPM) and out-of-phase motion (OPM), which are known in closed form and whose linear stability can be analyzed exactly. Our results verify that as the energy E increases for fixed N, beyond the destabilization threshold of these orbits, all positive Lyapunov exponents Li, i = 1,…, N - 1, exhibit a transition between two power laws, Li ∝ EBk, Bk > 0, k = 1, 2, occurring at the same value of E. The destabilization energy Ec per particle goes to zero as N → ∞ following a simple power-law, Ec/N ∝ N-α, with α being 1 or 2 for the cases we studied. However, using SALI, a very efficient indicator we have recently introduced for distinguishing order from chaos, we find that the two Hamiltonians have very different dynamics near their stable SPOs: For example, in the case of the FPU system, as the energy increases for fixed N, the islands of stability around the OPM decrease in size, the orbit destabilizes through period-doubling bifurcation and its eigenvalues move steadily away from -1, while for the BEC model the OPM has islands around it which grow in size before it bifurcates through symmetry breaking, while its real eigenvalues return to +1 at very high energies. Furthermore, the IPM orbit of the BEC Hamiltonian never destabilizes, having finite-size islands around it, even for very high N and E. Still, when calculating Lyapunov spectra, we find for the OPMs of both Hamiltonians that the Lyapunov exponents decrease following an exponential law and yield extensive Kolmogorov–Sinai entropies per particle h KS /N ∝ const., in the thermodynamic limit of fixed energy density E/N with E and N arbitrarily large.


Author(s):  
Arkady Pikovsky ◽  
Antonio Politi
Keyword(s):  

1997 ◽  
Vol 2 (2) ◽  
pp. 186-191 ◽  
Author(s):  
William P. Dunlap ◽  
Leann Myers

Author(s):  
Nguyen Cao Thang ◽  
Luu Xuan Hung

The paper presents a performance analysis of global-local mean square error criterion of stochastic linearization for some nonlinear oscillators. This criterion of stochastic linearization for nonlinear oscillators bases on dual conception to the local mean square error criterion (LOMSEC). The algorithm is generally built to multi degree of freedom (MDOF) nonlinear oscillators. Then, the performance analysis is carried out for two applications which comprise a rolling ship oscillation and two degree of freedom one. The improvement on accuracy of the proposed criterion has been shown in comparison with the conventional Gaussian equivalent linearization (GEL).


Sign in / Sign up

Export Citation Format

Share Document