Nucleotide Sequence of the Genes Encoding the Two Major Proteins in the Cytoplasmic Membrane of Synechococcus PCC 7942

1990 ◽  
pp. 2431-2434
Author(s):  
Tatsuo Omata ◽  
Teruo Ogawa ◽  
Thomas J. Carlson ◽  
John Pierce
1990 ◽  
Vol 93 (1) ◽  
pp. 305-311 ◽  
Author(s):  
Tatsuo Omata ◽  
Thomas J. Carlson ◽  
Teruo Ogawa ◽  
John Pierce

1996 ◽  
Vol 316 (1) ◽  
pp. 251-257 ◽  
Author(s):  
Michinori MUTSUDA ◽  
Takahiro ISHIKAWA ◽  
Toru TAKEDA ◽  
Shigeru SHIGEOKA

Synechococcus PCC 7942, a cyanobacterium, possesses catalase–peroxidase as the sole hydrogen peroxide-scavenging system. The enzyme has been purified to electrophoretic homogenenity from the cells. The native enzyme had a molecular mass of 150 kDa and was composed of two identical subunits of molecular mass 79 kDa. The apparent Km value of the catalase activity for H2O2 was 4.2±0.27 mM and the kcat value was 2.6×104 s-1. The enzyme contained high catalase activity and an appreciable peroxidase activity with o-dianisidine and pyrogallol. The catalase activity was not inhibited by 3-amino-1,2,4-triazole but by KCN and NaN3 (apparent Ki values 19.3±0.84 and 20.2±0.95 μM respectively). The enzyme showed an absorption spectrum of typical protohaem and contained one protohaem molecule per dimer. The gene encoding catalase–peroxidase was cloned from the chromosomal DNA of Synechococcus PCC 7942. A 2160 bp open reading frame (ORF), coding a catalase–peroxidase of 720 amino acid residues (approx. 79.9 kDa), was observed. The deduced amino acid sequence coincided with that of the N-terminus of the purified enzyme and showed a remarkable similarity to those of a family of catalase–peroxidases of prokaryotic cells. Escherichia coli BL21(DE3)plysS, harbouring a recombinant plasmid containing the catalase–peroxidase gene, produced a large amount of proteins that co-migrated on SDS/PAGE with the native enzyme. The recombinant enzyme showed the same ratio of catalase activity to peroxidase activity with o-dianisidine and the same Km for H2O2 as the native enzyme.


Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 393-402 ◽  
Author(s):  
T.J. Mohun ◽  
N. Garrett

The complete nucleotide sequence of two Xenopus actin genes encoding cytoskeletal protein isoforms has been determined. Transcripts from these genes are remarkably similar in nucleotide sequence throughout their length and code for type-5 and type-8 cytoskeletal actins. Both share some sequence homology with human gamma-actin mRNA within the 3′ untranslated region but none with the equivalent region of any vertebrate beta-actin transcript. The promoter regions of the two Xenopus genes are virtually identical from the cap site to the CCAAT box and show extensive homology further upstream. Despite such similarity, the two genes are divergently expressed during embryonic development. The type-5 actin gene is expressed in all regions of the developing embryo whilst the type-8 gene is coregulated with the muscle-specific skeletal actin gene. In common with mammalian and avian cytoskeletal actin counterparts, the Xenopus genes possess a conserved sequence within their promoter that has previously been identified as a transcription-factor-binding site.


1995 ◽  
Vol 246 (3) ◽  
pp. 301-308 ◽  
Author(s):  
Erika Soltes-Rak ◽  
Donn J. Kushner ◽  
D. Dudley Williams ◽  
John R. Coleman

Sign in / Sign up

Export Citation Format

Share Document