Impact of human activities on nematode communities in terrestrial ecosystems

Author(s):  
L. Wasilewska
1997 ◽  
Vol 5 (2) ◽  
pp. 131-144 ◽  
Author(s):  
J D Lozon ◽  
H J MacIsaac

We utilize literature surveys to examine the relationship between establishment of exotic species and human or natural disturbances of ecosystems. Of the 133 papers published in 10 ecological journals between 1993 and 1995, 63 reported on field studies involving 299 and 103 successful, nonredundant plant and animal introductions, respectively. Invasions of terrestrial ecosystems dominated (>>97%) the surveyed literature. Disturbance was associated with establishment of exotic species in 56% of these studies, though its importance differed among papers describing plants (68%) and animals (28%). Plants species (86%) were significantly more dependent on disturbance for establishment than were animals (12%). However, animals and plants that were dependent on disturbance for establishment were almost equally dependent (58 versus 68%) on it for range expansion. In a second survey, 402 plant and 103 animal taxa were identified that explicitly linked establishment of exotic species to disturbance. Human activities were attributed with establishment of species in 97 and 57% of these cases, respectively. Common mechanisms associated with establishment of exotic animals included ballast water discharge, intentional releases, and residential development. Establishment of exotic plants was associated with animal activities (e.g., grazing, seed introduction), soil disturbance, forestry, fire, agriculture, and human activities. In contrast to invasions theory, our survey indicates that the association between establishment and spread of exotic species and disturbance ought not be assumed a priori. Some animals repeatedly invade new habitats once geographic barriers are circumvented, indicating that communities may be more receptive to exotic species than previously acknowledged. By contrast, introduced plants established most often in disturbed habitats.


2019 ◽  
Vol 41 (4) ◽  
pp. 335
Author(s):  
Z. G. Sun ◽  
J. S. Wu ◽  
F. Liu ◽  
T. Y. Shao ◽  
X. B. Liu ◽  
...  

Identifying the effects of climate change and human activities on the degradation and restoration of terrestrial ecosystems is essential for sustainable management of these ecosystems. However, our knowledge of methodology on this topic is limited. To assess the relative contribution of climate change and human activities, actual and potential net primary productivity (NPPa and NPPp respectively), and human appropriation of net primary productivity (HANPP) were calculated and applied to the monitoring of forest, grassland, and cropland ecosystems in Yunnan–Guizhou–Sichuan Provinces, southwest China. We determined annual means of 476 g C m–2 year–1 for NPPa, 1314 g C m–2 year–1 for NPPp, and 849 g C m–2 year–1 for HANPP during the period between 2007 and 2016. Furthermore, the area with an increasing NPPa accounted for 75.12% of the total area of the three ecosystems. Similarly, the areas with increasing NPPp and HANPP accounted for 77.60 and 57.58% of the study area respectively. Furthermore, we found that ~57.58% of areas with ecosystem restored was due to climate change, 23.39% due to human activities, and 19.03% due to the combined effects of human activities and climate change. In contrast, climate change and human activities contributed to 19.47 and 76.36%, respectively, of the areas of degraded ecosystem. Only 4.17% of degraded ecosystem could be attributed to the combined influences of climate change and human activities. We conclude that human activities were mainly responsible for ecosystem degradation, whereas climate change benefitted ecosystem restoration in southwest China in the past decade.


2011 ◽  
Vol 23 (4) ◽  
pp. 349-357 ◽  
Author(s):  
Uffe N. Nielsen ◽  
Diana H. Wall ◽  
Grace Li ◽  
Manuel Toro ◽  
Byron J. Adams ◽  
...  

AbstractThe nematode communities of Antarctica are considered simple. The few species present are well adapted to the harsh conditions and often endemic to Antarctica. Knowledge of Antarctic terrestrial ecosystems is increasing rapidly, but nematode communities remain to be explored in large parts of Antarctica. In soil samples collected at Byers Peninsula (Antarctic Specially Protected Area No. 126), Livingston Island we recorded 37 nematode taxa but samples showed great variation in richness and abundance. Nematode richness decreased with increasing soil pH, whereas total abundances, and the abundance of several trophic groups, were greatest at intermediate pH (around 6.5–7). Moreover, the community composition was mainly related to pH and less so to soil moisture. Trophic group, and total nematode, rotifer and tardigrade, abundances were generally positively correlated. Byers Peninsula is thus, by maritime Antarctic standards, a nematode biodiversity hotspot, and the presence of several previously unrecorded genera indicates that nematode species richness in maritime Antarctica is probably underestimated. Our results indicate that abiotic factors influence nematode communities with little evidence for biotic interactions. The unexplained heterogeneity in community composition is probably related to variation in microclimate, vegetation, topography and unmeasured soil properties, but may also be contributed to by biological processes.


1990 ◽  
Vol 17 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Richard A. Kenchington ◽  
Mary T. Agardy

Most marine ecosystems present priorities for conservation which are different from, but no less urgent than, those of terrestrial systems. These priorities relate to understanding and regulating human use and impact within the large scale, and the high but variable degree of connectivity of marine systems. The identification and preservation of remnant examples of marine ecosystems, otherwise destroyed by human activity, is generally less of an issue than it is for terrestrial conservation. As a consequence, the needs of marine conservation are not readily addressed by models developed for terrestrial ecosystems, which are based on excluding or severely limiting human access in managed areas. An exception is the philosophy of the Biosphere Reserve, developed as part of the UNESCO Man and the Biosphere Programme. This appears particularly appropriate to marine environments, as it focuses on managing human activities and impacts within the sustainable capacity of the ecosystem.


2019 ◽  
Vol 11 (23) ◽  
pp. 2766 ◽  
Author(s):  
Xiaozheng Du ◽  
Xiang Zhao ◽  
Tao Zhou ◽  
Bo Jiang ◽  
Peipei Xu ◽  
...  

Global climate changes have increased the imbalance of water resources, especially in northern China, which comprises typical arid and semiarid regions. Large-scale afforestation has been implemented over the past three decades in northern China. The ecosystem water use efficiency (WUE) connects the carbon cycle and water cycle of the terrestrial ecosystems and is defined as the ratio of the gross primary productivity (GPP) to the evapotranspiration. However, there are still an insufficient number of studies on the impact of the afforestation on the WUE. In this study, we applied the random forest (RF) model to explore the impacts of climate and nonclimate factors on the WUE in northern China. The results showed that in areas with high precipitation, the forests had the highest WUE, while in the arid areas, the croplands had the highest WUE. Of the total area, 44.34% showed a significant increase, and 5.89% showed a significant decrease in the WUE from 1982–2015 in northern China. The main driving factors for the changes in the WUE were climate factors, including the precipitation, temperature and solar radiation, which contributed to approximately 84% of the WUE trends, while human activities, such as afforestation, contributed to approximately 16% of the WUE trends. Overall, although the climate had a larger impact on the WUE dynamics than the human activities, our results suggested that the impacts of the afforestation programs on forest carbon and water cycles should be considered in the context of climate change.


2018 ◽  
Vol 30 ◽  
pp. 76-86 ◽  
Author(s):  
Valentina Sechi ◽  
Ron G.M. De Goede ◽  
Michiel Rutgers ◽  
Lijbert Brussaard ◽  
Christian Mulder

1999 ◽  
Vol 13 (3) ◽  
pp. 751-760 ◽  
Author(s):  
Nina Buchmann

Sign in / Sign up

Export Citation Format

Share Document