Residual Stresses in Porous Plasma-Sprayed Alumina Coating on Titanium Alloy for Medical Applications

Author(s):  
H. Carrerot ◽  
J. Rieu ◽  
A. Rambert
Author(s):  
A.C. Leger ◽  
A. Haddadi ◽  
B. Pateyron ◽  
G. Delluc ◽  
A. Grimaud ◽  
...  

Abstract A simplified ID model has been developed to calculate the temperature time history of alumina layering splats. The splats were obtained by plasma spraying alumina fused and crushed particles (- 45 + 22 µm). The model has shown that for more than 160-200 µm layered splats the solidification time is over 7-10 µs, When spraying thin passes (ep < 15 µm) each splat cools down to substrate preheating temperature before next splat impacts. On the contrary for thick passes (ep = 60 or 180 µm), after depositing a certain thickness (between 160 and 200 µm) depending on spraying conditions, the temperature of the splats never drops below 800-900 K (mean splat temperature). In this case nucleation occurs after flattening is completed. Such conditions allow a columnar growth through the layered splats of each pass and successive passes. The study of the corresponding stresses (quenching σq and expansion mismatch) generated when spraying alumina on XC38 sheet was measured by following continuously the bending of a beam. The comparison of the measurements with the results of a ID model developed by Tsui and Clyne has allowed to calculate the coating Young's modulus Ed and the residual stresses difference at the interface. For thin coatings σq and Ed increase with preheating temperature. For thick coatings the values of Ed and σq are lower than the highest ones of thin coatings. This is probably due to stress relaxation by cracks propagation, the quenching and expansion mismatch stresses increasing with the increasing mean splat temperature.


2009 ◽  
Vol 24 (1) ◽  
pp. 117-121 ◽  
Author(s):  
Chun-Ming DENG ◽  
Ke-Song ZHOU ◽  
Min LIU ◽  
Chang-Guang DENG ◽  
Jin-Bing SONG ◽  
...  

Author(s):  
X. Ranz ◽  
T. Aslanian ◽  
L. Pawlowski ◽  
L. Sabatier ◽  
R. Fabbro

Abstract The hydroxyapatite Ca10(PO4)6OH2 (HAP) was plasma sprayed onto titanium alloy substrate. The samples having thickness of about 150 µm ware sprayed in a way to obtain two different content of crystalline HAP: 25 an 30 %. The coatings ware subsequently submitted to laser treatment with the CO2 laser. The treatment was carried out with different laser powers and scanning velocities and resulting thereof sample surface temperatures and the kinetics of the thermal fields ware monitored with a pyrometer. The XRD method enabled verification of the crystallinity state of HAP, content of amorphous calcium phosphate and the content of foreign phases. Optical microscope was used to check the microstructure and the depth of laser modified zone.


2021 ◽  
pp. 34-43
Author(s):  
A.V. Sviridov ◽  
◽  
М.S. Gribkov ◽  

The technology of electron-beam welding (EBW) of structures of large thickness made of titanium alloy Ti–6Al–4V has been developed. A complex of metallographic studies of welded samples has been carried out. Tests to determine the mechanical characteristics of repair welded joints, that these joints made by EBW are equal in strength to the base material. The analysis of the level of residual stresses in various parts of the welded joint after repeated repair passes has been carried out. It was found that the subsequent vacuum annealing reduces the level of residual stresses in welded joints to 50 %. The analysis of the elemental composition showed that the elemental composition of the samples from the center of the weld to the base metal practically does not change for welding with the number of repeated passes up to 3.


2011 ◽  
Author(s):  
C. Deleuze ◽  
A. Fabre ◽  
L. Barrallier ◽  
O. Molinas ◽  
Francisco Chinesta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document