Sex-Ratio Determination in Three Wasp Species Ectoparasitic on Bean Weevil Larvae

Author(s):  
Koichi Fujii ◽  
Khin Mar Wai
2003 ◽  
Vol 3 (3) ◽  
pp. 471-475 ◽  
Author(s):  
Serge Aron ◽  
Ludivine De Menten ◽  
Dirk Van Bockstaele

Evolution ◽  
1986 ◽  
Vol 40 (1) ◽  
pp. 199-204 ◽  
Author(s):  
Peter Nonacs

2021 ◽  
Author(s):  
Justin Van Goor ◽  
Edward Allen Herre ◽  
Adalberto Gomez ◽  
John D Nason

Sex ratio theory predicts both mean sex ratio and variance under a range of population structures. Here, we compare two genera of phoretic nematodes (Parasitodiplogaster and Ficophagus spp.) associated with twelve fig-pollinating wasp species in Panama. The host wasps exhibit classic Local Mate Competition: only inseminated females disperse from natal figs, and their offspring form mating pools that consist of scores of the adult offspring contributed by one or a few foundress mothers. In contrast, in both nematode genera, only sexually undifferentiated juveniles disperse, and their mating pools routinely consist of eight or fewer adults. Across all mating pool sizes, the sex ratios observed in both nematode genera are consistently female-biased (~0.34 males), which is markedly less female-biased than is often observed in the host wasps (~0.10 males). In further contrast with their hosts, variances in nematode sex ratios are also consistently precise (significantly less than binomial). The constraints associated with predictably small mating pools within highly subdivided populations appear to select for precise sex ratios that contribute both to the reproductive success of individual nematodes, and to the evolutionary persistence of nematode species. We suggest that some form of environmental sex determination underlies these precise sex ratios.


2020 ◽  
Vol 287 (1934) ◽  
pp. 20201377 ◽  
Author(s):  
Jaco M. Greeff ◽  
Karina Pentz ◽  
Marié Warren

Ever since Darwin's discovery of natural selection, we expect traits to evolve to increase organisms' fitness. As a result, we can use optimization models to make a priori predictions of phenotypic variation, even when selection is frequency-dependent. A notable example is the prediction of female-biased sex ratios resulting from local mate competition (LMC) and inbreeding. LMC models incorporate the effects of LMC and inbreeding. Fig wasp sex ratio adjustments fit LMC predictions well. However, the appropriateness of LMC models to fig wasps has been questioned, and the role that a coincidental by-product plays in creating the apparent fit has been clearly illustrated. Here, we show that the sex ratio adjustments of a fig wasp are the result of a dual mechanism. It consists of a standard facultative LMC response favoured by natural selection, as well as a mechanism that may be the result of selection, but that could also be a coincidental by-product. If it is a by-product, the fitness increase is coincidental and natural selection's role was limited to fine-tuning it for higher fitness returns. We further document a case of an apparent fitness-reducing sex ratio adjustment. We conclude that the use of the adaptationist approach demands that our understanding of traits must be remodelled continually to rectify spurious assumptions.


1988 ◽  
Vol 23 (4) ◽  
pp. 233-245 ◽  
Author(s):  
A. F. G. Bourke ◽  
T. M. van der Have ◽  
N. R. Franks

2000 ◽  
Vol 59 (3) ◽  
pp. 523-527 ◽  
Author(s):  
Ken R. Helms ◽  
Jennifer H. Fewell ◽  
Steven W. Rissing

Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1579-1588 ◽  
Author(s):  
Ellen Kenchington ◽  
Barry MacDonald ◽  
Liqin Cao ◽  
Defkalion Tsagkarakis ◽  
Eleftherios Zouros

Abstract Previous studies have shown that in most pair matings of Mytilus edulis, M. trossulus, and M. galloprovincialis there is a large sex-ratio bias in favor of either males or females. The degree of bias is a characteristic property of the female parent, as matings of the same female with different males produce the same sex ratio, but matings of the same male with different females produce different sex ratios. All three species possess the unusual feature of doubly uniparental inheritance of mitochondrial DNA (mtDNA); i.e., they contain two distinct types of mtDNA, one that is transmitted matrilinearly and one that is transmitted patrilinearly. This coupling of sex and mtDNA transmission raises the possibility that the mechanism of sex-ratio determination in mussels might be under the control of the mtDNA of the female parent. Here we present data from pedigreed crosses that confirm the previous observations that in mussel matings there is a strong sex-ratio bias and that the bias is under the control of the female parent. In addition, these data strongly suggest that this control is exercised by the mother's nuclear rather than mitochondrial genotype. Making use of these findings we develop a model of mother-dependent sex determination and use data from crosses involving wild females to test the model's predictions at the population level.


Author(s):  
Ryosuke Iritani ◽  
Stuart A West ◽  
Jun Abe

AbstractHamilton’s local mate competition theory provided an explanation for extraordinary female biased sex ratios in a range of organisms. When mating takes place locally, in structured populations, a female biased sex ratio is favoured to reduce competition between related males, and to provide more mates for males. However, there are a number of wasp species where the sex ratios appear to more female biased than predicted by Hamilton’s theory. We investigated theoretically the extent to which cooperative interactions between related females can interact with local mate competition to favour even more female biased sex ratios. We found that: (i) cooperative interactions between females can lead to sex ratios that are more female biased than predicted by local competition theory alone; (ii) sex ratios can be more female biased when the cooperative interactions are offspring helping parents before dispersal, rather than cooperation between siblings after dispersal. Our results can be applied to a range of organisms, and provide an explanation for the extreme sex ratio biases that have been observed in Sclerodermus and Melittobia wasps.


Sign in / Sign up

Export Citation Format

Share Document