scholarly journals Extraordinarily precise nematode sex ratios: Adaptive responses to vanishingly rare mating options

2021 ◽  
Author(s):  
Justin Van Goor ◽  
Edward Allen Herre ◽  
Adalberto Gomez ◽  
John D Nason

Sex ratio theory predicts both mean sex ratio and variance under a range of population structures. Here, we compare two genera of phoretic nematodes (Parasitodiplogaster and Ficophagus spp.) associated with twelve fig-pollinating wasp species in Panama. The host wasps exhibit classic Local Mate Competition: only inseminated females disperse from natal figs, and their offspring form mating pools that consist of scores of the adult offspring contributed by one or a few foundress mothers. In contrast, in both nematode genera, only sexually undifferentiated juveniles disperse, and their mating pools routinely consist of eight or fewer adults. Across all mating pool sizes, the sex ratios observed in both nematode genera are consistently female-biased (~0.34 males), which is markedly less female-biased than is often observed in the host wasps (~0.10 males). In further contrast with their hosts, variances in nematode sex ratios are also consistently precise (significantly less than binomial). The constraints associated with predictably small mating pools within highly subdivided populations appear to select for precise sex ratios that contribute both to the reproductive success of individual nematodes, and to the evolutionary persistence of nematode species. We suggest that some form of environmental sex determination underlies these precise sex ratios.

Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1793
Author(s):  
Justin Van Goor ◽  
Diane C. Shakes ◽  
Eric S. Haag

Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two “seminal” contributions of G. A. Parker. 


Behaviour ◽  
1990 ◽  
Vol 114 (1-4) ◽  
pp. 137-147 ◽  
Author(s):  
H.C.J. Godfray ◽  
I.C.W. Hardy

Abstract1) Sex ratio theory has assumed that females can produce offspring of both sexes. It has been suggested that some females in haplodiploid populations are only able to produce sons (constrained sex allocation), for example because they are virgin. The presence of such females influences the optimal sex ratio of unconstrained females. The relevance of these ideas to field sex ratios is largely untested. 2) The frequencies of constrained oviposition in three Drosophila parasitoid species are estimated. Constrained, ovipositing females were distinguished by the absence of sperm in the spermatheca. Constrained females were absent or rare in these species. 3) We review data from the literature that allow an estimate of the frequency of constrained females. 4) We conclude that the available evidence suggests that while constrained oviposition is uncommon, there are some species in which constrained females are sufficiently common to select for an observable sex ratio bias by unconstrained females.


Author(s):  
Ryosuke Iritani ◽  
Stuart A West ◽  
Jun Abe

AbstractHamilton’s local mate competition theory provided an explanation for extraordinary female biased sex ratios in a range of organisms. When mating takes place locally, in structured populations, a female biased sex ratio is favoured to reduce competition between related males, and to provide more mates for males. However, there are a number of wasp species where the sex ratios appear to more female biased than predicted by Hamilton’s theory. We investigated theoretically the extent to which cooperative interactions between related females can interact with local mate competition to favour even more female biased sex ratios. We found that: (i) cooperative interactions between females can lead to sex ratios that are more female biased than predicted by local competition theory alone; (ii) sex ratios can be more female biased when the cooperative interactions are offspring helping parents before dispersal, rather than cooperation between siblings after dispersal. Our results can be applied to a range of organisms, and provide an explanation for the extreme sex ratio biases that have been observed in Sclerodermus and Melittobia wasps.


2019 ◽  
Vol 110 (4) ◽  
pp. 411-421 ◽  
Author(s):  
Fredric J Janzen ◽  
David M Delaney ◽  
Timothy S Mitchell ◽  
Daniel A Warner

Abstract Fisherian sex-ratio theory predicts sexual species should have a balanced primary sex ratio. However, organisms with environmental sex determination (ESD) are particularly vulnerable to experiencing skewed sex ratios when environmental conditions vary. Theoretical work has modeled sex-ratio dynamics for animals with ESD with regard to 2 traits predicted to be responsive to sex-ratio selection: 1) maternal oviposition behavior and 2) sensitivity of embryonic sex determination to environmental conditions, and much research has since focused on how these traits influence offspring sex ratios. However, relatively few studies have provided estimates of univariate quantitative genetic parameters for these 2 traits, and the existence of phenotypic or genetic covariances among these traits has not been assessed. Here, we leverage studies on 3 species of reptiles (2 turtle species and a lizard) with temperature-dependent sex determination (TSD) to assess phenotypic covariances between measures of maternal oviposition behavior and thermal sensitivity of the sex-determining pathway. These studies quantified maternal behaviors that relate to nest temperature and sex ratio of offspring incubated under controlled conditions. A positive covariance between these traits would enhance the efficiency of sex-ratio selection when primary sex ratio is unbalanced. However, we detected no such covariance between measures of these categories of traits in the 3 study species. These results suggest that maternal oviposition behavior and thermal sensitivity of sex determination in embryos might evolve independently. Such information is critical to understand how animals with TSD will respond to rapidly changing environments that induce sex-ratio selection.


2011 ◽  
Vol 86 (4) ◽  
pp. 401-405 ◽  
Author(s):  
S. D'Ávila ◽  
E.C.A. Bessa ◽  
S. Souza-Lima ◽  
M.L.A. Rodrigues

AbstractIn the present study populations of the avian nematode species Baruscapillaria obsignata are described from Columba livia. Male and female individuals were obtained from 27 birds, fixed in alcohol/formalin/acetic acid (AFA) and preserved in 70% ethanol. Nematodes were identified and then counted under a stereoscopic microscope. Baruscapillaria obsignata were much more frequent in the anterior third of the small intestine, and females were more abundant than males in all infra populations. The prevalence was 55.6%, mean intensity was 11.8 (median 11.0; range 1–31) and abundance 6.56. In the present study, we observed an aggregated distribution of parasite infrapopulations, as demonstrated by the value of the exponent of the negative binomial distribution, K = 0.2773; by the discrepancy index, D = 0.656 and by the variance/mean ratio, 12.44. The female/male sex ratios found in all infrapopulations were always greater than 1, showing a bias in favour of female abundance. This tendency was especially marked in infrapopulations containing fewer individuals. The sizes of infrapopulations ranged from 5 to 31 individuals. The mean sex ratio observed was 2.69 ± 3.28 (median 1.83; range 0–11). In infrapopulations with 5–15 individuals, the sex ratios observed varied from 2.6 to 11, while in those with 17–31 individuals, the sex ratios were lower, ranging from 1.7 to 2.4. There was a negative correlation between the intensity of infection and the sex ratio of infrapopulations. Results are discussed in terms of possible factors influencing the processes that lead to niche restriction and biased sex ratios in parasite infrapopulations.


Parasitology ◽  
2010 ◽  
Vol 137 (13) ◽  
pp. 1851-1859 ◽  
Author(s):  
A.T. NEAL ◽  
J.J. SCHALL

SUMMARYSex ratio theory predicts that malaria parasites should bias gametocyte production toward female cells in single-clone infections because they will experience complete inbreeding of parasite gametes within the vector. A higher proportion of male gametocytes is favoured under conditions that reduce success of male gametes at reaching females such as low gametocyte density or attack of the immune system later in the infection. Recent experimental studies reveal genetic variation for gametocyte sex ratio in single-clone infections. We examined these issues with a study of experimental single-clone infections for the lizard malaria parasite Plasmodium mexicanum in its natural host. Gametocyte sex ratios of replicate single-clone infections were determined over a period of 3–4 months. Sex ratios were generally female biased, but not as strongly as expected under simple sex ratio theory. Gametocyte density was not related to sex ratio, and male gametocytes did not become more common later in infections. The apparent surplus of male gametocytes could be explained if male fecundity is low in this parasite, or if rapid clotting of the lizard blood reduces male gamete mobility. There was also a significant clone effect on sex ratio, suggesting genetic variation for some life-history trait, possibly male fecundity.


1992 ◽  
Vol 70 (12) ◽  
pp. 2483-2486 ◽  
Author(s):  
Heather C. Proctor

I regularly sampled a pond in southern Ontario throughout the ice-free season in 1990 to determine adult phenology of the water mite Neumania papillator. Adult mites were present from 23 April to 9 November. Sex ratios in field samples were strongly male biased from 25 June to 2 November; however, mites raised from deutonymphs (juveniles) in the laboratory showed strongly female-biased sex ratios. Experiments indicated that differences in field and laboratory sex ratios could not be explained by differential susceptibility of the sexes to predation or starvation. Sex-biased distribution or trappability, or environmental sex determination may explain sex-ratio differences.


Sign in / Sign up

Export Citation Format

Share Document