Post-CHF Heat Transfer in Boiler Tubes

1988 ◽  
pp. 553-574
Author(s):  
W. Koehler ◽  
W. Kastner
Keyword(s):  
Author(s):  
Raymond Kuriger ◽  
David Young ◽  
Malcolm Mackenzie ◽  
Hamid Sarv ◽  
Jason Trembly

Scale buildup on water-side heat transfer surfaces poses a potential operating challenge for steam-assisted gravity drainage (SAGD) boilers used in the production of bitumen since produced water, which has a high dissolved solid content, is recycled. Scale from deposition of dissolved solids on boiler tubes acts as a thermal insulating layer, decreasing heat transfer and lowering boiler efficiency. Understanding scale deposit composition on heat transfer surfaces is beneficial in the determination of adequate boiler maintenance practices and operating parameters. This research determined the effect of feedwater pH (7.5, 9.0, and 10.0) on scale composition resulting from deposition of dissolved solids under commercially relevant boiler operating conditions at 8.96 MPa (1300 psig) and 37.86 kW/m2 (12,000 Btu/h ft2). Scale deposits were analytically investigated using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM/EDS), powder X-ray diffraction (XRD), and Raman spectroscopy. At feedwater pH values of 7.5 and 9.0, anhydrite (CaSO4), xonotlite (Ca6Si6O17(OH)2), and pectolite (NaCa2Si3O8(OH)) were detected. At the pH of 10.0, xonotlite and pectolite were identified in the absence of anhydrite. Furthermore, the magnesium silicate phase, serpentine (Mg3Si2O5(OH)4), was also postulated to be present.


1966 ◽  
Vol 15 (1) ◽  
pp. 6-11
Author(s):  
Masamichi Kowaka ◽  
Masaaki Kitamura ◽  
Takashi Nakajima

2021 ◽  
Author(s):  
Shanta Mazumder

The gasified fluidized bed has been looked at as a safer replacement for heat treatment of carbon steel wire traditionally heat treated using molten lead baths. Most of the research has been conducted on heat transfer to larger diameter boiler tubes immersed in gas fluidized beds used by the power generation industry. However, there has been a lack of research on small diameter cylinders and longitudinally moving wire in heat treating systems. In 2015, Tannas developed a correlation that confirmed that the correlation previously developed for static wire under-predicts the heat transfer rate at higher wire speeds. In addition, this earlier correlation did not account for varying fluidization rates and only assumed that Nu was independent of fluidization rate for Ug/Umf > 2.5. So, the work reported here is intended to develop a new correlation that accounts for both wire motion and fluidizing rate in fluidized bed.


2021 ◽  
Author(s):  
Shanta Mazumder

The gasified fluidized bed has been looked at as a safer replacement for heat treatment of carbon steel wire traditionally heat treated using molten lead baths. Most of the research has been conducted on heat transfer to larger diameter boiler tubes immersed in gas fluidized beds used by the power generation industry. However, there has been a lack of research on small diameter cylinders and longitudinally moving wire in heat treating systems. In 2015, Tannas developed a correlation that confirmed that the correlation previously developed for static wire under-predicts the heat transfer rate at higher wire speeds. In addition, this earlier correlation did not account for varying fluidization rates and only assumed that Nu was independent of fluidization rate for Ug/Umf > 2.5. So, the work reported here is intended to develop a new correlation that accounts for both wire motion and fluidizing rate in fluidized bed.


Sign in / Sign up

Export Citation Format

Share Document