Fatigue Crack Growth — A Metallurgist’s Point of View

1985 ◽  
pp. 27-42 ◽  
Author(s):  
W. J. Bratina ◽  
S. Yue
2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Valery Lacroix ◽  
Yinsheng Li ◽  
Bohumir Strnadel ◽  
Kunio Hasegawa

A subsurface flaw located near a component surface is transformed to a surface flaw in accordance with a flaw-to-surface proximity rule. The recharacterization process from subsurface to surface flaw is adopted in all fitness-for-service (FFS) codes. However, the criteria of the recharacterizations are different among the FFS codes. In addition, the proximity factors in the rules are generally defined by constant values, irrespective of flaw aspect ratios. This paper describes the stress intensity factor interaction between the subsurface flaw and component free surface and proposes a proximity factor from the point of view of fatigue crack growth rates.


2007 ◽  
Vol 353-358 ◽  
pp. 1219-1224
Author(s):  
Seon Jin Kim ◽  
Yu Sik Kong ◽  
Young Soo Kim ◽  
Byung Tak Kim ◽  
Young Join Noh ◽  
...  

In this paper, an analysis of fatigue crack growth (FCG) behavior from a statistical point of view has been carried out. Fatigue crack growth tests were conducted on sixteen pre-cracked compact tension (CT) specimens of the pressure vessel (SPV50) steel in controlled identical load and environmental conditions. The assessment of the statistical distribution of fatigue crack growth experimental data obtained from SPV50 steel was studied and also the correlation of the parameter C and m in the Paris-Erdogan law was discussed. The probability distribution function of FCG life and FCG rate seems to follow the 3-parameter Weibull.


Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Valery Lacroix ◽  
Bohumir Strnadel

A subsurface flaw located near a component surface is transformed to a surface flaw in accordance with a flaw-to-surface proximity rule. The re-characterization process from subsurface to surface flaw is adopted in all fitness-for-service (FFS) codes. However, the criteria of the re-characterizations are different among the FFS codes. In addition, the proximity factors in the rules are defined by constant values, irrespective of flaw aspect ratios. This paper describes the stress intensity factor interaction between the subsurface flaw and component free surface, and proposes a proximity factor from the point of view of fatigue crack growth rates.


2001 ◽  
Vol 11 (PR5) ◽  
pp. Pr5-69-Pr5-75
Author(s):  
V. S. Deshpande ◽  
H. H.M. Cleveringa ◽  
E. Van der Giessen ◽  
A. Needleman

2010 ◽  
Vol 38 (3) ◽  
pp. 194-212 ◽  
Author(s):  
Bastian Näser ◽  
Michael Kaliske ◽  
Will V. Mars

Abstract Fatigue crack growth can occur in elastomeric structures whenever cyclic loading is applied. In order to design robust products, sensitivity to fatigue crack growth must be investigated and minimized. The task has two basic components: (1) to define the material behavior through measurements showing how the crack growth rate depends on conditions that drive the crack, and (2) to compute the conditions experienced by the crack. Important features relevant to the analysis of structures include time-dependent aspects of rubber’s stress-strain behavior (as recently demonstrated via the dwell period effect observed by Harbour et al.), and strain induced crystallization. For the numerical representation, classical fracture mechanical concepts are reviewed and the novel material force approach is introduced. With the material force approach at hand, even dissipative effects of elastomeric materials can be investigated. These complex properties of fatigue crack behavior are illustrated in the context of tire durability simulations as an important field of application.


Sign in / Sign up

Export Citation Format

Share Document