Monte Carlo Simulations of the 2+1 Dimensional Fokker-Planck Equation: Spherical Star Clusters Containing Massive, Central Black Holes

1985 ◽  
pp. 373-413 ◽  
Author(s):  
Stuart L. Shapiro
1985 ◽  
Vol 113 ◽  
pp. 373-413 ◽  
Author(s):  
Stuart L. Shapiro

The dynamical behavior of a relaxed star cluster containing a massive, central black hole poses a challenging problem for the theorist and intriguing possibilities for the observer. The historical development of the subject is sketched and the salient features of the physical solution and its observational consequences are summarized.The full dynamical problem of a relaxed, self-gravitating, large N-body system containing a massive central black hole has all the necessary ingredients to excite the most dispassionate many-body, computational physicist: it is a time-dependent, multidimensional, nonlinear problem which must be solved over widely disparate length and time scales simultaneously. The problem has been tackled at various levels of approximation over the years. A new 2+1 dimensional Monte Carlo simulation code has been developed in appreciable generality to solve the time-dependent Fokker-Planck equation in E-J space for this problem. The code incorporates such features as (1) a particle “cloning and renormalization” scheme to provide a statistically reliable population of test particles in low density regions of phase space and (2) a time-step “adjustment” algorithm to ensure integration on local relaxation timescales without having to follow typical particles on orbital trajectories. However, critical regions in phase space (e.g. disruption “loss-cone” trajectories) can still be followed on orbital timescales. Numerical results obtained with this Monte Carlo scheme for the dynamical structure and evolution of globular star clusters and dense galactic nuclei containing massive black holes are reviewed.Recent dynamical integrations of the Einstein field equations for spherical, collisionless (Vlasov) systems in General Relativity suggest a possible origin for the supermassive black holes believed to power quasars and active galactic nuclei. This scenario is discussed briefly.


1973 ◽  
Vol 52 ◽  
pp. 187-189
Author(s):  
P. Cugnon

This paper is devoted to a comparison between results obtained by Purcell and Spitzer (1971) using a Monte-Carlo method and by the author (1971) using a Fokker-Planck equation. It is shown that there is a good agreement between the results within the dispersion expected from the Monte-Carlo method.


2005 ◽  
Vol 20 (2) ◽  
pp. 23-27
Author(s):  
Francesco Teodori ◽  
Vincenzo Molinari

The aim of this work is to analyze the diffusion and the slowing down of high energy proton shots through a target. Analyzing the phenomenon rigorously with the full transport equations, means tack ling many difficulties, most of which arise from the long range nature of the Coulomb interactions involving more than one particle simultaneously. The commonly used approach of neglecting the multi-body collisions, though correct for rarefied neutral gases, of ten leads to very poor approximations when charged particles moving through dense matter are considered. Here we present a Monte Carlo simulation of the Fokker-Planck equation where the multi-body collisions are taken into account. The model al lows the calculation of a point-wise distribution of energy and momentum transferred to the tar get.


1996 ◽  
Vol 124 (3) ◽  
pp. 369-389 ◽  
Author(s):  
J. E. Morel ◽  
Leonard J. Lorence ◽  
Ronald P. Kensek ◽  
John A. Halbleib ◽  
D. P. Sloan

Sign in / Sign up

Export Citation Format

Share Document